Type: Preprint
Publication Date: 2023-01-01
Citations: 2
DOI: https://doi.org/10.2139/ssrn.4584713
The pursuit of room-temperature ambient-pressure superconductivity in novel materials has sparked interest, with recent reports suggesting such properties in Cu-substituted lead apatite, known as LK-99. However, these claims lack comprehensive experimental and theoretical support. In this study, we address this gap by conducting ab initio calculations to explore the impact of varying doping concentrations (x = 0, 1, 2) on the stability and electronic properties of five compounds in the LK-99 family. Our investigations confirm the isolated flat bands that intersect the Fermi level in LK-99 (Pb9Cu(PO4)6O:Cu). In contrast, the other four parent compounds exhibit insulating behavior with wide band gaps. X-ray diffraction spectra based on the DFT simulations at 0K confirm the presence of Cu substitution on Pb(1) sites in the originally synthesized LK-99 sample, while an extra peak suggests potential alternative like Pb8Cu2(PO4)6 phases due to compositional variations in the original LK-99 samples. Furthermore, the LK-99 structure undergoes substantial lattice constriction, resulting in a significant 5.5% reduction in volume and 6.8% in area of two mutually inverted triangles formed by Pb(2) atoms. Meanwhile, energy calculations reveal a marginal energy preference for substituting Cu on Pb(2) sites over Pb(1) sites, with a difference of approximately 0.010 eV per atom (roughly 0.9645 k/mol). Intriguingly, at pressures exceeding 73 GPa, stability shifts towards LK-99 containing Cu substitutions on Pb(1) sites. Despite exhibiting higher electronic conductivity than parent compounds, Pb9Cu(PO4)6O:Cu falls short of the conductivity levels observed in metals or advanced oxide conductors with the simulation based on the Boltzmann transport theory.