Type: Article
Publication Date: 2023-09-25
Citations: 0
DOI: https://doi.org/10.1017/etds.2023.68
Abstract We study the equidistribution of orbits of the form $b_1^{a_1(n)}\cdots b_k^{a_k(n)}\Gamma $ in a nilmanifold X , where the sequences $a_i(n)$ arise from smooth functions of polynomial growth belonging to a Hardy field. We show that under certain assumptions on the growth rates of the functions $a_1,\ldots ,a_k$ , these orbits are equidistributed on some subnilmanifold of the space X . As an application of these results and in combination with the Host–Kra structure theorem for measure-preserving systems, as well as some recent seminorm estimates of the author for ergodic averages concerning Hardy field functions, we deduce a norm convergence result for multiple ergodic averages. Our method mainly relies on an equidistribution result of Green and Tao on finite segments of polynomial orbits on a nilmanifold [The quantitative behaviour of polynomial orbits on nilmanifolds. Ann. of Math. (2) 175 (2012), 465–540].
Action | Title | Year | Authors |
---|