Beyond the Erdős discrepancy problem in function fields

Type: Article

Publication Date: 2023-09-12

Citations: 1

DOI: https://doi.org/10.1007/s00208-023-02700-z

Abstract

Abstract We characterize the limiting behavior of partial sums of multiplicative functions $$f:\mathbb {F}_q[t]\rightarrow S^1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>:</mml:mo> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>q</mml:mi> </mml:msub> <mml:mrow> <mml:mo>[</mml:mo> <mml:mi>t</mml:mi> <mml:mo>]</mml:mo> </mml:mrow> <mml:mo>→</mml:mo> <mml:msup> <mml:mi>S</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> </mml:math> . In contrast to the number field setting, the characterization depends crucially on whether the notion of discrepancy is defined using long intervals , short intervals , or lexicographic intervals . Concerning the notion of short interval discrepancy, we show that a completely multiplicative $$f:\mathbb {F}_q[t]\rightarrow \{-1,+1\}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>:</mml:mo> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>q</mml:mi> </mml:msub> <mml:mrow> <mml:mo>[</mml:mo> <mml:mi>t</mml:mi> <mml:mo>]</mml:mo> </mml:mrow> <mml:mo>→</mml:mo> <mml:mrow> <mml:mo>{</mml:mo> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo>}</mml:mo> </mml:mrow> </mml:mrow> </mml:math> with q odd has bounded short interval sums if and only if f coincides with a “modified" Dirichlet character to a prime power modulus. This confirms the function field version of a conjecture over $$\mathbb {Z}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>Z</mml:mi> </mml:math> that such modified characters are extremal with respect to partial sums. Regarding the lexicographic discrepancy, we prove that the discrepancy of a completely multiplicative sequence is always infinite if we define it using a natural lexicographic ordering of $$\mathbb {F}_{q}[t]$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>q</mml:mi> </mml:msub> <mml:mrow> <mml:mo>[</mml:mo> <mml:mi>t</mml:mi> <mml:mo>]</mml:mo> </mml:mrow> </mml:mrow> </mml:math> . This answers a question of Liu and Wooley. Concerning the long sum discrepancy, it was observed by the Polymath 5 collaboration that the Erdős discrepancy problem admits infinitely many completely multiplicative counterexamples on $$\mathbb {F}_q[t]$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>q</mml:mi> </mml:msub> <mml:mrow> <mml:mo>[</mml:mo> <mml:mi>t</mml:mi> <mml:mo>]</mml:mo> </mml:mrow> </mml:mrow> </mml:math> . Nevertheless, we are able to classify the counterexamples if we restrict to the class of modified Dirichlet characters. In this setting, we determine the precise growth rate of the discrepancy, which is still unknown for the analogous problem over the integers.

Locations

  • Mathematische Annalen - View - PDF

Similar Works

Action Title Year Authors
+ Beyond the Erdős discrepancy problem in function fields 2022 Oleksiy Klurman
Alexander P. Mangerel
Joni Teräväinen
+ PDF Chat Additive functions in short intervals, gaps and a conjecture of Erdős 2022 Alexander P. Mangerel
+ On the multiplicative Erdős discrepancy problem 2010 Michael James Coons
+ PDF Chat The Erdős discrepancy problem 2016 Terence Tao
+ PDF Chat An Erdős-Wintner theorem for differences of additive functions 1988 Adolf Hildebrand
+ The Erdős discrepancy problem over the squarefree and cubefree integers 2019 Marco Aymone
+ On lower bounds for Erdős-Szekeres products 2021 C. Billsborough
Michael Freedman
Sarah B. Hart
Gidon Kowalsky
D. S. Lubinsky
A. Pomeranz
A. Sammel
+ PDF Chat Divisor-bounded multiplicative functions in short intervals 2023 Alexander P. Mangerel
+ Variant of a theorem of Erdős on the sum-of-proper-divisors function 2013 Carl Pomerance
Hee-Sung Yang
+ PDF Chat Some problems of Erdős on the sum-of-divisors function 2016 Paul Pollack
Carl Pomerance
+ Erdös distance problem in vector spaces over finite fields 2007 Alex Iosevich
M. Rudnev
+ The Erdős discrepancy problem over the squarefree and cubefree integers 2022 Marco Aymone
+ PDF Chat Rigidity theorems for multiplicative functions 2018 Oleksiy Klurman
Alexander P. Mangerel
+ PDF Chat Correlations of multiplicative functions in function fields 2022 Oleksiy Klurman
Alexander P. Mangerel
Joni Teräväinen
+ Rigidity Theorems for Multiplicative Functions 2017 Oleksiy Klurman
Alexander P. Mangerel
+ Additive functions in short intervals, gaps and a conjecture of Erd\H{o}s 2021 Alexander P. Mangerel
+ Unification of zero-sum problems, subset sums and covers of ℤ 2003 Zhi‐Wei Sun
+ PDF Chat The Erdős Theorem and the Halberstam Theorem in function fields 2004 Yu-Ru Liu
+ Additive functions in short intervals, gaps and a conjecture of Erdős 2021 Alexander P. Mangerel
+ On a problem of Erdős, Nathanson and Sárközy 2019 Yong-Gao Chen
Ya-Li Li