A result related to the Sendov conjecture

Type: Article

Publication Date: 2023-01-01

Citations: 0

DOI: https://doi.org/10.4064/ap221118-1-6

Abstract

The Sendov conjecture asserts that if $p(z) = \prod_{j=1}^{N}(z-z_j)$ is a polynomial with zeros $|z_j| \leq 1$, then each disk $|z-z_j| \leq 1$ contains a zero of $p’$. Our purpose is the following: Given a zero $z_j$ of order $n \geq 2$, determine wheth

Locations

  • Annales Polonici Mathematici - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ A Problem Related to the Sendov Conjecture 2008 Aaron Shatzer
Haggai Nuchi
+ PDF Chat A note on the structure of the zeros of a polynomial and Sendov's conjecture 2023 G. M. Sofi
Wali Mohammad Shah
+ Sendov's Conjecture: A note on a paper of Dégot 2018 Taboka Chalebgwa
+ Sendov's Conjecture: A note on a paper of D\'{e}got 2018 Taboka Chalebgwa
+ PDF Chat On the Sendov Conjecture for Sixth Degree Polynomials 1991 Johnny E. Brown
+ On a conjecture of Sendov about the critical points of a polynomial 1985 Borislav Bojanov
Q. I. Rahman
Jan Szynal
+ The Sendov conjecture for polynomials with at most seven distinct zeros 1996 Julius Borcea
+ THE SENDOV CONJECTURE FOR POLYNOMIALS WITH AT MOST SEVEN DISTINCT ZEROS 1996 LULIUS BORCEA
+ PDF Chat Sendov’s Conjecture: A Note on a Paper of Dégot 2020 Taboka Chalebgwa
+ Sendov conjecture for high degree polynomials 2011 Jérôme Dégot
+ Sendov conjecture for high degree polynomials 2011 Jérôme Dégot
+ A Proof of Sendov's Conjecture 2019 G. M. Sofi
+ A proof of the sendov conjecture for polynomials of degree seven 1997 Johnny E. Brown
+ Sendov conjecture for high degree polynomials 2014 Jérôme Dégot
+ PDF Chat A Private Case of Sendov's Conjecture 2020 Todor Stoyanov Stoyanov
+ A Proof of Sendovs conjecture for Polynomials of degree Ten 2019 Dinesh Sharma Bhattarai
+ On the Sendov conjecture for polynomials with simple zeros 2018 Robert Dalmasso
+ On the Sendov conjecture for polynomials with real critical points 1999 Johnny E. Brown
+ Proof of Sendov's conjecture 2022 S. A. Drury
Minghua Lin
+ An Equivalent Problem to the Collatz Conjecture 2016 Islem Ghaffor

Works That Cite This (0)

Action Title Year Authors