Uniqueness of the 2D Euler equation on rough domains

Type: Preprint

Publication Date: 2023-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2308.12926

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Uniqueness for the 2-D Euler equations on domains with corners 2013 Christophe Lacave
Évelyne Miot
Chao Wang
+ Uniqueness of the 2D Euler equation on a corner domain with non-constant vorticity around the corner 2020 Siddhant Agrawal
Andrea R. Nahmod
+ PDF Chat Uniqueness of the 2D Euler equation on a corner domain with non-constant vorticity around the corner 2022 Siddhant Agrawal
Andrea R. Nahmod
+ PDF Chat Uniqueness for the 2-D Euler equations on domains with corners 2014 Christophe Lacave
Évelyne Miot
Chao Wang
+ PDF Chat Uniqueness for Two-Dimensional Incompressible Ideal Flow on Singular Domains 2015 Christophe Lacave
+ Uniqueness of Positive Vorticity Solutions to the 2D Euler Equations on Singular Domains 2022 Zonglin Han
Andrej Zlatoš
+ The 2D Euler equation on singular domains 2011 David Gérard‐Varet
Christophe Lacave
+ Local uniqueness of vortices for 2D steady Euler flow in a bounded domain 2020 Daomin Cao
W. Yu
Changjun Zou
+ PDF Chat Local uniqueness of vortices for 2D steady Euler flow in a bounded domain 2022 Daomin Cao
W. Yu
Changjun Zou
+ Blow up for the 2D Euler equation on some bounded domains 2015 Alexander Kiselev
Andrej Zlatoš
+ Blow up for the 2D Euler Equation on Some Bounded Domains 2014 Alexander Kiselev
Andrej Zlatoš
+ Blow up for the 2D Euler Equation on Some Bounded Domains 2014 Alexander Kiselev
Andrej Zlatoš
+ Steady three-dimensional ideal flows with nonvanishing vorticity in domains with edges 2020 Douglas Svensson Seth
+ Steady three-dimensional ideal flows with nonvanishing vorticity in domains with edges 2020 Douglas Svensson Seth
+ Steady three-dimensional ideal flows with nonvanishing vorticity in domains with edges 2020 Douglas Svensson Seth
+ Stability of 2D steady Euler flows with concentrated vorticity 2021 Guodong Wang
+ PDF Chat Stability of 2D steady Euler flows with concentrated vorticity 2021 Guodong Wang
+ PDF Chat Local Existence for the 2D Euler Equations in a Critical Sobolev Space 2024 Elaine Cozzi
Nicholas Harrison
+ PDF Chat On the flow map for 2D Euler equations with unbounded vorticity 2011 James P. Kelliher
+ Fast growth of the vorticity gradient in symmetric smooth domains for 2D incompressible ideal flow 2014 Xiaoqian Xu

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors