Diversity-Aware Meta Visual Prompting

Type: Article

Publication Date: 2023-06-01

Citations: 24

DOI: https://doi.org/10.1109/cvpr52729.2023.01047

Abstract

We present Diversity-Aware Meta Visual Prompting (DAM-VP), an efficient and effective prompting method for transferring pre-trained models to downstream tasks with frozen backbone. A challenging issue in visual prompting is that image datasets sometimes have a large data diversity whereas a per-dataset generic prompt can hardly handle the complex distribution shift toward the original pretraining data distribution properly. To address this issue, we propose a dataset Diversity-Aware prompting strategy whose initialization is realized by a Meta-prompt. Specifically, we cluster the downstream dataset into small homogeneity subsets in a diversity-adaptive way, with each subset has its own prompt optimized separately. Such a divide-and-conquer design reduces the optimization difficulty greatly and significantly boosts the prompting performance. Furthermore, all the prompts are initialized with a meta-prompt, which is learned across several datasets. It is a bootstrapped paradigm, with the key observation that the prompting knowledge learned from previous datasets could help the prompt to converge faster and perform better on a new dataset. During inference, we dynamically select a proper prompt for each input, based on the feature distance between the input and each subset. Through extensive experiments, our DAM-VP demonstrates superior efficiency and effectiveness, clearly surpassing previous prompting methods in a series of downstream datasets for different pretraining models. Our code is available at: https://github.com/shikiw/DAM-VP.

Locations

  • arXiv (Cornell University) - View - PDF
  • 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) - View

Similar Works

Action Title Year Authors
+ Diversity-Aware Meta Visual Prompting 2023 Qidong Huang
Xiaoyi Dong
Dongdong Chen
Weiming Zhang
Feifei Wang
Gang Hua
Nenghai Yu
+ PDF Chat Revisiting the Power of Prompt for Visual Tuning 2024 Yuzhu Wang
Lechao Cheng
Chaowei Fang
Dingwen Zhang
Manni Duan
Meng Wang
+ HCVP: Leveraging Hierarchical Contrastive Visual Prompt for Domain Generalization 2024 Guanglin Zhou
Zhongyi Han
Shiming Chen
Biwei Huang
Liming Zhu
Tongliang Liu
Lina Yao
Kun Zhang
+ Unleashing the Power of Visual Prompting At the Pixel Level 2022 Junyang Wu
Xianhang Li
Wei Chen
Huiyu Wang
Alan Yuille
Yuyin Zhou
Cihang Xie
+ PDF Chat SA²VP: Spatially Aligned-and-Adapted Visual Prompt 2024 Wenjie Pei
Tongqi Xia
Fanglin Chen
Jinsong Li
Jiandong Tian
Guangming Lu
+ SA$^2$VP: Spatially Aligned-and-Adapted Visual Prompt 2023 Wenjie Pei
Tongqi Xia
Fanglin Chen
Jinsong Li
Jiandong Tian
Guangming Lu
+ PDF Chat MePT: Multi-Representation Guided Prompt Tuning for Vision-Language Model 2024 Xinyang Wang
Yi Yang
Minfeng Zhu
Kecheng Zheng
Shi Liu
Wei Chen
+ PDF Chat Exploring Sparse Visual Prompt for Domain Adaptive Dense Prediction 2024 Senqiao Yang
Jiarui Wu
Jiaming Liu
Xiaoqi Li
Qizhe Zhang
Mingjie Pan
Yulu Gan
Zehui Chen
Shanghang Zhang
+ PDF Chat Semantic Hierarchical Prompt Tuning for Parameter-Efficient Fine-Tuning 2024 Haowei Zhu
Fangyuan Zhang
Rui Qin
Tianxiang Pan
Jun‐Hai Yong
Bin Wang
+ Exploring Sparse Visual Prompt for Domain Adaptive Dense Prediction 2023 Senqiao Yang
Jiarui Wu
Jiaming Liu
Xiaoqi Li
Qizhe Zhang
Mingjie Pan
Yulu Gan
Zehui Chen
Shanghang Zhang
+ Progressive Visual Prompt Learning with Contrastive Feature Re-formation 2023 Xu Chen
Haocheng Shen
Fengyuan Shi
Boheng Chen
Yixuan Liao
Xiaoxin Chen
Limin Wang
+ PDF Chat BlackVIP: Black-Box Visual Prompting for Robust Transfer Learning 2023 Changdae Oh
Hyeji Hwang
Heeyoung Lee
Yongtaek Lim
Geunyoung Jung
Jiyoung Jung
Hosik Choi
Kyungwoo Song
+ Unlocking the Potential of Prompt-Tuning in Bridging Generalized and Personalized Federated Learning 2023 Wenlong Deng
Christos Thrampoulidis
Xiaoxiao Li
+ AutoVP: An Automated Visual Prompting Framework and Benchmark 2023 Hsi-Ai Tsao
Lei Hsiung
Pin‐Yu Chen
Sijia Liu
Tsung-Yi Ho
+ PDF Chat Prompt Diffusion Robustifies Any-Modality Prompt Learning 2024 Yingjun Du
Gaowen Liu
Yuzhang Shang
Yuguang Yao
Ramana Rao Kompella
Cees G. M. Snoek
+ PDF Chat Prompt-aligned Gradient for Prompt Tuning 2023 Beier Zhu
Yulei Niu
Yucheng Han
Yue Wu
Hanwang Zhang
+ PDF Chat iVPT: Improving Task-relevant Information Sharing in Visual Prompt Tuning by Cross-layer Dynamic Connection 2024 Nan Zhou
Jiaxin Chen
Di Huang
+ BlackVIP: Black-Box Visual Prompting for Robust Transfer Learning 2023 Changdae Oh
Hyeji Hwang
Heeyoung Lee
Yongtaek Lim
Geunyoung Jung
Jiyoung Jung
Hosik Choi
Kyungwoo Song
+ PDF Chat CVPT: Cross-Attention help Visual Prompt Tuning adapt visual task 2024 Lingyun Huang
Jianxu Mao
Yaonan Wang
Junfei Yi
Ziming Tao
+ Facing the Elephant in the Room: Visual Prompt Tuning or Full Finetuning? 2024 Cheng Han
Qifan Wang
Yiming Cui
Wenguan Wang
Lifu Huang
Siyuan Qi
Dongfang Liu

Works Cited by This (39)

Action Title Year Authors
+ PDF Chat Describing Textures in the Wild 2014 Mircea Cimpoi
Subhransu Maji
Iasonas Kokkinos
Sammy Mohamed
Andrea Vedaldi
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
+ Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks 2017 Chelsea Finn
Pieter Abbeel
Sergey Levine
+ Reptile: a Scalable Metalearning Algorithm 2018 Alex Nichol
John Schulman
+ BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding 2018 Jacob Devlin
Ming‐Wei Chang
Kenton Lee
Kristina Toutanova
+ PDF Chat The Unreasonable Effectiveness of Deep Features as a Perceptual Metric 2018 Richard Zhang
Phillip Isola
Alexei A. Efros
Eli Shechtman
Oliver Wang
+ PDF Chat EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification 2019 Patrick Helber
Benjamin Bischke
Andreas Dengel
Damian Borth
+ Parameter-Efficient Transfer Learning for NLP 2019 Neil Houlsby
Andrei Giurgiu
Stanisław Jastrzȩbski
Bruna Morrone
Quentin de Laroussilhe
Andréa Gesmundo
Mona Attariyan
Sylvain Gelly
+ A Simple Framework for Contrastive Learning of Visual Representations 2020 Ting Chen
Simon Kornblith
Mohammad Norouzi
Geoffrey E. Hinton
+ A Large-scale Study of Representation Learning with the Visual Task Adaptation Benchmark 2019 Xiaohua Zhai
Joan Puigcerver
Alexander Kolesnikov
Pierre Ruyssen
Carlos Riquelme
Mario Lučić
Josip Djolonga
André Susano Pinto
Maxim Neumann
Alexey Dosovitskiy