On the well-posedness problem for the derivative nonlinear Schrödinger equation

Type: Preprint

Publication Date: 2021-01-01

Citations: 3

DOI: https://doi.org/10.48550/arxiv.2101.12274

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat On the well-posedness problem for the derivative nonlinear Schrödinger equation 2023 Rowan Killip
Maria Ntekoume
Monica Vişan
+ PDF Chat Large-Data Equicontinuity for the Derivative NLS 2022 Benjamin Harrop‐Griffiths
Rowan Killip
Monica Vişan
+ Global well-posedness for the derivative nonlinear Schrödinger equation in $L^2(\mathbb{R})$ 2022 Benjamin Harrop‐Griffiths
Rowan Killip
Maria Ntekoume
Monica Vişan
+ A remark on global well-posedness of the derivative nonlinear Schr\"odinger equation on the circle 2015 Răzvan Moşincat
Tadahiro Oh
+ A remark on global well-posedness of the derivative nonlinear Schrödinger equation on the circle 2015 Răzvan Moşincat
Tadahiro Oh
+ Norm inflation for the derivative nonlinear Schrödinger equation 2022 Yuzhao Wang
Younes Zine
+ Normal form approach to global well-posedness of the quadratic derivative nonlinear Schr\"odinger equation on the circle 2015 Jaywan Chung
Zihua Guo
Soonsik Kwon
Tadahiro Oh
+ Normal form approach to global well-posedness of the quadratic derivative nonlinear Schrödinger equation on the circle 2015 Jaywan Chung
Zihua Guo
Soonsik Kwon
Tadahiro Oh
+ Well-Posedness of an Integrable Generalization of the Nonlinear Schrödinger Equation on the Circle 2011 A. S. Fokas
A. Alexandrou Himonas
+ GLOBAL WELL-POSEDNESS FOR SCHR ¨ ODINGER EQUATIONS WITH DERIVATIVE ∗ 2001 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terence Tao
+ Global well-posedness for the derivative nonlinear Schrödinger equation 2020 Hajer Bahouri
Galina Perelman
+ PDF Chat Global well-posedness on the derivative nonlinear Schrödinger equation 2015 Yifei Wu
+ Global well-posedness for Schrödinger equations with derivative 2001 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terry Tao
+ Norm inflation for the derivative nonlinear Schrödinger equation 2024 Yuzhao Wang
Younes Zine
+ PDF Chat A Refined Global Well-Posedness Result for Schrödinger Equations with Derivative 2002 J. Colliander
M. Keel
G. Staffilani
Hideo Takaoka
Terence Tao
+ Global well-posedness for the derivative nonlinear Schr\"{o}dinger equation in $H^{\frac 12} (\mathbb{R})$ 2016 Zihua Guo
Yifei Wu
+ Global well-posedness of the derivative nonlinear Schr\"odinger equation with periodic boundary condition in $H^{\frac12}$ 2016 Răzvan Moşincat
+ PDF Chat Well-posedness and ill-posedness for a system of periodic quadratic derivative nonlinear Schr\"odinger equations 2024 Hiroyuki Hirayama
S. Kinoshita
Mamoru Okamoto
+ Global well-posedness of the derivative nonlinear Schrödinger equation with periodic boundary condition in $H^{\frac12}$ 2016 Răzvan Moşincat
+ PDF Chat Probabilistic global-wellposedness for the energy-supercritical Schr\"odinger equations on compact manifolds 2025 Seynabou Gueye
Filone G. Longmou-Moffo
Mouhamadou Sy

Works Cited by This (0)

Action Title Year Authors