Fourier expansion of light‐cone Eisenstein series

Type: Article

Publication Date: 2023-08-11

Citations: 2

DOI: https://doi.org/10.1112/jlms.12805

Abstract

Abstract In this work, we give an explicit formula for the Fourier coefficients of Eisenstein series corresponding to certain arithmetic lattices acting on hyperbolic ‐space. As a consequence, we obtain results on location of all poles of these Eisenstein series as well as their supremum norms. We use this information to get new results on counting rational points on spheres.

Locations

  • Journal of the London Mathematical Society - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Uppsala University Publications (Uppsala University) - View - PDF

Similar Works

Action Title Year Authors
+ Fourier expansion of light-cone Eisenstein series 2022 Dubi Kelmer
Shucheng Yu
+ Counting Lattice Points in Polytopes:The Ehrhart Theory 2007
+ PDF Chat Exponential Sums and Lattice Points 1993 M. N. Huxley
+ Explicit Formula for Counting Lattice Points of Polyhedra 2007 Jean B. Lasserre
Eduardo S. Zeron
+ Lattice points in rational ellipsoids 2008 Fernando Chamizo
Elena de las Heras Cristóbal
Adrián Ubis
+ PDF Chat None 1996 Ricardo Vázquez Díaz
Sinai Robins
+ Counting Lattice Points 2000 C. D. Olds
Anneli Lax
Giuliana P. Davidoff
+ Counting lattice points on spheres 2000 John A. Ewell
+ Counting Lattice Points of Rational Polyhedra 2000 Beifang Chen
Vladimir Turaev
+ Lattice Point Visibility on Power Functions. 2018 Pamela E. Harris
Mohamed Omar
+ Rational Ehrhart Theory 2021 Matthias Beck
Sophia Elia
Sophie Rehberg
+ Rational Ehrhart Theory 2021 Matthias Beck
Sophia Elia
Sophie Rehberg
+ Lattice point visibility on power functions 2017 Pamela E. Harris
Mohamed Omar
+ Corrigenda: Exponential Sums and Lattice Points II 1994 M. N. Huxley
+ Lattice-points enumeration in polytopes: study of the coefficients of the Ehrhart quasi-polynomial 2016 Hélène O. Rochais
+ Quantum limits, counting and Landau-type formulae in hyperbolic space 2016 Niko Laaksonen
+ Lattice Point Problems: Crossroads of Number Theory, Probability Theory and Fourier Analysis 2004 József Beck
+ None 2004 William Duke
Özlem Imamoğlu
+ PDF Chat Ehrhart polynomials of polytopes and spectrum at infinity of Laurent polynomials 2020 Antoine Douai
+ Ehrhart polynomials of lattice polyhedral functions 2005 Beifang Chen