The ε-maximal operator and Haar multipliers on variable Lebesgue spaces

Type: Article

Publication Date: 2023-01-01

Citations: 0

DOI: https://doi.org/10.7153/mia-2023-26-41

Abstract

Recently, Stockdale, Villarroya, and Wick introduced the ε -maximal operator to prove the Haar multiplier is bounded on the weighted spaces L p (w) for a class of weights larger than A p .We prove the ε -maximal operator and Haar multiplier are bounded on variable Lebesgue spaces L p(•) (R n ) for a larger collection of exponent functions than the log-Hölder continuous functions used to prove the boundedness of the maximal operator on L p(•) (R n ) .We also prove that the Haar multiplier is compact when restricted to a dyadic cube Q 0 .

Locations

  • Mathematical Inequalities & Applications - View - PDF

Similar Works

Action Title Year Authors
+ The ε-Maximal Operator and Haar Multipliers on Variable Lebesgue Spaces 2022 David Cruz-Uribe
Michael Penrod
+ PDF Chat The fractional maximal operator and fractional integrals on variable $L^p$ spaces 2007 Claudia Capone
David Cruz-Uribe
Alberto Fıorenza
+ The maximal operator on weighted variable Lebesgue spaces 2011 David Cruz-Uribe
Lars Diening
Peter Hästö
+ The Boundedness of fractional maximal operators on variable Lebesgue spaces over spaces of homogeneous type 2015 David Cruz-Uribe
Parantap Shukla
+ The Boundedness of fractional maximal operators on variable Lebesgue spaces over spaces of homogeneous type 2015 David Cruz-Uribe
Parantap Shukla
+ PDF Chat The Hardy--Littlewood maximal operator and BLO<sup>1/log</sup> class of exponents 2016 Tengiz Kopaliani
Shalva Zviadadze
+ The maximal function on variable spaces. 2003 David Cruz-Uribe
A. Firorenza
C. J. Neugebauer
+ PDF Chat Characterizations of Variable Martingale Hardy Spaces Via Maximal Functions 2021 Weisz Ferenc
+ PDF Chat New fractional maximal operators in the theory of martingale Hardy and Lebesgue spaces with variable exponents 2022 Ferenc Weisz
+ Maximal multiplier operators in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mo>⋅</mml:mo><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false… 2015 Амиран Гогатишвили
Tengiz Kopaliani
+ PDF Chat Boundedness of dyadic maximal operators on variable Lebesgue spaces 2020 Ferenc Weisz
+ The maximal operator and the Sobolev theorem on variable exponent spaces 2005 Alberto Fiorenza
+ MAXIMAL FUNCTIONS IN VARIABLE EXPONENT SPACES: LIMITING CASES OF THE EXPONENT 2009 Lars Diening
Petteri Harjulehto
Peter Hästö
Yoshihiro Mizuta
Tetsu Shimomura
+ The maximal operator in Lebesgue spaces with variable exponent near 1 2006 Peter Hästö
+ Maximal Operator 2016 René Erlín Castillo
Humberto Rafeiro
+ PDF Chat Maximal Operator in Variable Exponent Lebesgue Spaces on Unbounded Quasimetric Measure Spaces 2015 Tomasz Adamowicz
Petteri Harjulehto
Peter Hästö
+ Maximal operator on variable Lebesgue spaces for almost monotone radial exponent 2007 Aleš Nekvinda
+ Variable Exponent Lebesgue Spaces on Metric Spaces: The Hardy-Littlewood Maximal Operator 2005 Petteri Harjulehto
Peter Hästö
Mikko Pere
+ PDF Chat On those Weights Satisfying a Weak-Type Inequality for the Maximal Operator and Fractional Maximal Operator 2024 B. Sweeting
+ Maximal operator in Hölder spaces 2023 Piotr Michał Bies
Michał Gaczkowski
Przemysław Górka

Works That Cite This (0)

Action Title Year Authors