CREST: A Joint Framework for Rationalization and Counterfactual Text Generation

Type: Article

Publication Date: 2023-01-01

Citations: 2

DOI: https://doi.org/10.18653/v1/2023.acl-long.842

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ CREST: A Joint Framework for Rationalization and Counterfactual Text Generation 2023 Marcos Treviso
Alexis Ross
Ricardo Rei
André F. T. Martins
+ Polyjuice: Generating Counterfactuals for Explaining, Evaluating, and Improving Models 2021 Tongshuang Wu
Marco Túlio Ribeiro
Jeffrey Heer
Daniel S. Weld
+ PDF Chat A Survey on Natural Language Counterfactual Generation 2024 Yongjie Wang
Xiaoqi Qiu
Yue Yu
Xu Guo
Zhiwei Zeng
Yuhong Feng
Zhiqi Shen
+ Polyjuice: Automated, General-purpose Counterfactual Generation. 2021 Tongshuang Wu
Marco Túlio Ribeiro
Jeffrey Heer
Daniel S. Weld
+ CORE: A Retrieve-then-Edit Framework for Counterfactual Data Generation 2022 Tanay Dixit
Bhargavi Paranjape
Hannaneh Hajishirzi
Luke Zettlemoyer
+ CORE: A Retrieve-then-Edit Framework for Counterfactual Data Generation 2022 Tanay Dixit
Bhargavi Paranjape
Hannaneh Hajishirzi
Luke Zettlemoyer
+ PDF Chat Optimal and efficient text counterfactuals using Graph Neural Networks 2024 Dimitris Lymperopoulos
Maria Lymperaiou
Giorgos Filandrianos
Giorgos Stamou
+ Faithful Explanations of Black-box NLP Models Using LLM-generated Counterfactuals 2023 Yair Ori Gat
Nitay Calderon
Amir Feder
Alexander Chapanin
Amit Sharma
Roi Reichart
+ Making a (Counterfactual) Difference One Rationale at a Time 2022 Mitchell Plyler
Michael Green
Min Chi
+ NeuroCounterfactuals: Beyond Minimal-Edit Counterfactuals for Richer Data Augmentation 2022 Phillip Howard
Gadi Singer
Vasudev Lal
Yejin Choi
Swabha Swayamdipta
+ NeuroCounterfactuals: Beyond Minimal-Edit Counterfactuals for Richer Data Augmentation 2022 Phillip Howard
Gadi Singer
Vasudev Lal
Yejin Choi
Swabha Swayamdipta
+ TIGTEC : Token Importance Guided TExt Counterfactuals 2023 Milan Bhan
Jean-Noël Vittaut
Nicolas Chesneau
Marie‐Jeanne Lesot
+ REFER: An End-to-end Rationale Extraction Framework for Explanation Regularization 2023 Mohammad Reza Ghasemi Madani
Pasquale Minervini
+ REFER: An End-to-end Rationale Extraction Framework for Explanation Regularization 2023 Mohammad Reza Ghasemi Madani
Pasquale Minervini
+ PDF Chat LLMs for Generating and Evaluating Counterfactuals: A Comprehensive Study 2024 Van Bach Nguyen
Paul Youssef
Jörg Schlötterer
Christin Seifert
+ Large Language Models as Counterfactual Generator: Strengths and Weaknesses 2023 Yongqi Li
Mayi Xu
Xin Miao
Shen Zhou
Tieyun Qian
+ PDF Chat Generate Your Counterfactuals: Towards Controlled Counterfactual Generation for Text 2021 Nishtha Madaan
Inkit Padhi
Naveen Panwar
Diptikalyan Saha
+ Generate Your Counterfactuals: Towards Controlled Counterfactual Generation for Text. 2021 Nishtha Madaan
Inkit Padhi
Naveen Panwar
Diptikalyan Saha
+ Generate Your Counterfactuals: Towards Controlled Counterfactual Generation for Text 2020 Nishtha Madaan
Inkit Padhi
Naveen Panwar
Diptikalyan Saha
+ Does Self-Rationalization Improve Robustness to Spurious Correlations? 2022 Alexis Ross
Matthew E. Peters
Ana Marasović