Polynomiality of the faithful dimension for nilpotent groups over finite truncated valuation rings

Type: Article

Publication Date: 2023-08-02

Citations: 0

DOI: https://doi.org/10.1090/tran/9032

Abstract

Given a finite group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper G"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">G</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathrm {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the <italic>faithful dimension</italic> of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper G"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">G</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathrm {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper C"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">C</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {C}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, denoted by <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="m Subscript normal f normal a normal i normal t normal h normal f normal u normal l Baseline left-parenthesis normal upper G right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>m</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">f</mml:mi> <mml:mi mathvariant="normal">a</mml:mi> <mml:mi mathvariant="normal">i</mml:mi> <mml:mi mathvariant="normal">t</mml:mi> <mml:mi mathvariant="normal">h</mml:mi> <mml:mi mathvariant="normal">f</mml:mi> <mml:mi mathvariant="normal">u</mml:mi> <mml:mi mathvariant="normal">l</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">G</mml:mi> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">m_\mathrm {faithful}(\mathrm {G})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, is the smallest integer <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding="application/x-tex">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper G"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">G</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathrm {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> can be embedded in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper G normal upper L Subscript n Baseline left-parenthesis double-struck upper C right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">G</mml:mi> <mml:mi mathvariant="normal">L</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">C</mml:mi> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathrm {GL}_n(\mathbb {C})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Continuing the work initiated by Bardestani et al. [Compos. Math. 155 (2019), pp. 1618–1654], we address the problem of determining the faithful dimension of a finite <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-group of the form <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper G Subscript upper R Baseline colon-equal exp left-parenthesis German g Subscript upper R Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="script">G</mml:mi> </mml:mrow> <mml:mi>R</mml:mi> </mml:msub> <mml:mo>≔</mml:mo> <mml:mi>exp</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">g</mml:mi> </mml:mrow> <mml:mi>R</mml:mi> </mml:msub> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathscr {G}_R≔\exp (\mathfrak {g}_R)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> associated to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="German g Subscript upper R Baseline colon-equal German g circled-times Subscript double-struck upper Z Baseline upper R"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">g</mml:mi> </mml:mrow> <mml:mi>R</mml:mi> </mml:msub> <mml:mo>≔</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">g</mml:mi> </mml:mrow> <mml:msub> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">Z</mml:mi> </mml:mrow> </mml:msub> <mml:mi>R</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathfrak {g}_R≔\mathfrak {g}\otimes _\mathbb {Z}R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the Lazard correspondence, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="German g"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">g</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathfrak {g}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a nilpotent <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper Z"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">Z</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {Z}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Lie algebra and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> ranges over finite truncated valuation rings. Our first main result is that if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a finite field with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p Superscript f"> <mml:semantics> <mml:msup> <mml:mi>p</mml:mi> <mml:mi>f</mml:mi> </mml:msup> <mml:annotation encoding="application/x-tex">p^f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> elements and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is sufficiently large, then <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="m Subscript normal f normal a normal i normal t normal h normal f normal u normal l Baseline left-parenthesis script upper G Subscript upper R Baseline right-parenthesis equals f g left-parenthesis p Superscript f Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>m</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">f</mml:mi> <mml:mi mathvariant="normal">a</mml:mi> <mml:mi mathvariant="normal">i</mml:mi> <mml:mi mathvariant="normal">t</mml:mi> <mml:mi mathvariant="normal">h</mml:mi> <mml:mi mathvariant="normal">f</mml:mi> <mml:mi mathvariant="normal">u</mml:mi> <mml:mi mathvariant="normal">l</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="script">G</mml:mi> </mml:mrow> <mml:mi>R</mml:mi> </mml:msub> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>f</mml:mi> <mml:mi>g</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:msup> <mml:mi>p</mml:mi> <mml:mi>f</mml:mi> </mml:msup> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">m_\mathrm {faithful}(\mathscr {G}_R)=fg(p^f)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g left-parenthesis upper T right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>T</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">g(T)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> belongs to a finite list of polynomials <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g 1 comma ellipsis comma g Subscript k Baseline"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>g</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>g</mml:mi> <mml:mi>k</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">g_1,\ldots ,g_k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, with non-negative integer coefficients. The latter list of polynomials is uniquely determined by the Lie algebra <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="German g"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">g</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathfrak {g}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Furthermore, for each <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="1 less-than-or-equal-to i less-than-or-equal-to k"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>i</mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>k</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">1\le i\leq k</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the set of pairs <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis p comma f right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(p,f)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for which <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g equals g Subscript i"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>g</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">g=g_i</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a finite union of Cartesian products <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper P times script upper F"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="script">P</mml:mi> </mml:mrow> <mml:mo>×<!-- × --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="script">F</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathscr P\times \mathscr F</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper P"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="script">P</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathscr P</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a Frobenius set of prime numbers and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper F"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="script">F</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathscr F</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a subset of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper N"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">N</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that belongs to the Boolean algebra generated by arithmetic progressions. Previously, existence of such a polynomial-type formula for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="m Subscript normal f normal a normal i normal t normal h normal f normal u normal l Baseline left-parenthesis script upper G Subscript upper R Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>m</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">f</mml:mi> <mml:mi mathvariant="normal">a</mml:mi> <mml:mi mathvariant="normal">i</mml:mi> <mml:mi mathvariant="normal">t</mml:mi> <mml:mi mathvariant="normal">h</mml:mi> <mml:mi mathvariant="normal">f</mml:mi> <mml:mi mathvariant="normal">u</mml:mi> <mml:mi mathvariant="normal">l</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="script">G</mml:mi> </mml:mrow> <mml:mi>R</mml:mi> </mml:msub> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">m_\mathrm {faithful}(\mathscr {G}_R)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> was only established under the assumption that either <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f equals 1"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">f=1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> or <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is fixed. Next we formulate a conjectural polynomiality property for the value of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="m Subscript normal f normal a normal i normal t normal h normal f normal u normal l Baseline left-parenthesis script upper G Subscript upper R Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>m</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">f</mml:mi> <mml:mi mathvariant="normal">a</mml:mi> <mml:mi mathvariant="normal">i</mml:mi> <mml:mi mathvariant="normal">t</mml:mi> <mml:mi mathvariant="normal">h</mml:mi> <mml:mi mathvariant="normal">f</mml:mi> <mml:mi mathvariant="normal">u</mml:mi> <mml:mi mathvariant="normal">l</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="script">G</mml:mi> </mml:mrow> <mml:mi>R</mml:mi> </mml:msub> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">m_\mathrm {faithful}(\mathscr {G}_R)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the more general setting where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a finite truncated valuation ring, and prove special cases of this conjecture. In particular, we show that for a vast class of Lie algebras <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="German g"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">g</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathfrak {g}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that are defined by partial orders, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="m Subscript normal f normal a normal i normal t normal h normal f normal u normal l Baseline left-parenthesis script upper G Subscript upper R Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>m</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">f</mml:mi> <mml:mi mathvariant="normal">a</mml:mi> <mml:mi mathvariant="normal">i</mml:mi> <mml:mi mathvariant="normal">t</mml:mi> <mml:mi mathvariant="normal">h</mml:mi> <mml:mi mathvariant="normal">f</mml:mi> <mml:mi mathvariant="normal">u</mml:mi> <mml:mi mathvariant="normal">l</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="script">G</mml:mi> </mml:mrow> <mml:mi>R</mml:mi> </mml:msub> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">m_\mathrm {faithful}(\mathscr {G}_R)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is given by a single polynomial-type formula. Finally, we compute <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="m Subscript normal f normal a normal i normal t normal h normal f normal u normal l Baseline left-parenthesis script upper G Subscript upper R Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>m</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">f</mml:mi> <mml:mi mathvariant="normal">a</mml:mi> <mml:mi mathvariant="normal">i</mml:mi> <mml:mi mathvariant="normal">t</mml:mi> <mml:mi mathvariant="normal">h</mml:mi> <mml:mi mathvariant="normal">f</mml:mi> <mml:mi mathvariant="normal">u</mml:mi> <mml:mi mathvariant="normal">l</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="script">G</mml:mi> </mml:mrow> <mml:mi>R</mml:mi> </mml:msub> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">m_\mathrm {faithful}(\mathscr {G}_R)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> precisely in the case where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="German g"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">g</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathfrak {g}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the free metabelian nilpotent Lie algebra of class <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="c"> <mml:semantics> <mml:mi>c</mml:mi> <mml:annotation encoding="application/x-tex">c</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding="application/x-tex">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> generators and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a finite truncated valuation ring.

Locations

  • arXiv (Cornell University) - View - PDF
  • Transactions of the American Mathematical Society - View

Similar Works

Action Title Year Authors
+ PDF Chat Polynomial structures for nilpotent groups 1996 Karel Dekimpe
Paul Igodt
Kyung Hwa Lee
+ PDF Chat Faithful abelian groups of infinite rank 1988 Ulrich Albrecht
+ PDF Chat Minimal cyclotomic splitting fields for group characters 1984 R. A. Mollin
+ PDF Chat Galois theory for fields 𝐾/𝑘 finitely generated 1974 Nickolas Heerema
James K. Deveney
+ PDF Chat Prime rings with involution whose symmetric zero-divisors are nilpotent 1973 P. M. Cohn
+ A multiplicity one theorem for groups of type 𝐴_{𝑛} over discrete valuation rings 2022 Shiv Prakash Patel
Pooja Singla
+ Multialternating graded polynomials and growth of polynomial identities 2013 Eli Aljadeff
Antonio Giambruno
+ 𝐺-graded central polynomials and 𝐺-graded Posner’s theorem 2018 Yakov Karasik
+ PDF Chat 𝑁𝐾₁ of finite groups 1987 Dennis R. Harmon
+ PDF Chat Graded rings and Krull orders 1989 Eric Jespers
P. Wauters
+ Character degrees and nilpotence class of finite 𝑝-groups: An approach via pro-𝑝 groups 2002 Andrei Jaikin‐Zapirain
Alexander Moretó
+ 𝐺₀ of a graded ring 1972 Leslie G. Roberts
+ The ring of polynomial functors of prime degree 2014 Alexander Zimmermann
+ PDF Chat Lifting primitivity of free nilpotent groups 1992 Gupta Rk
N. D. Gupta
+ PDF Chat The Jacobson radical of group rings of locally finite groups 1997 D. S. Passman
+ PDF Chat Primes dividing character degrees and character orbit sizes 1987 David Gluck
+ PDF Chat Finitely generated nilpotent groups with isomorphic finite quotients 1971 P. F. Pickel
+ Representations of reductive groups over finite rings 2004 G. Lusztig
+ Rings of coinvariants and 𝑝-subgroups 2010 Tzu-Chun Lin
+ PDF Chat Densities for ranks of certain parts of 𝑝-class groups 1987 Frank Gerth

Works That Cite This (0)

Action Title Year Authors