Type: Article
Publication Date: 2023-08-02
Citations: 0
DOI: https://doi.org/10.1090/tran/9032
Given a finite group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper G"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">G</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathrm {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the <italic>faithful dimension</italic> of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper G"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">G</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathrm {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper C"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">C</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {C}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, denoted by <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="m Subscript normal f normal a normal i normal t normal h normal f normal u normal l Baseline left-parenthesis normal upper G right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>m</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">f</mml:mi> <mml:mi mathvariant="normal">a</mml:mi> <mml:mi mathvariant="normal">i</mml:mi> <mml:mi mathvariant="normal">t</mml:mi> <mml:mi mathvariant="normal">h</mml:mi> <mml:mi mathvariant="normal">f</mml:mi> <mml:mi mathvariant="normal">u</mml:mi> <mml:mi mathvariant="normal">l</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">G</mml:mi> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">m_\mathrm {faithful}(\mathrm {G})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, is the smallest integer <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding="application/x-tex">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper G"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">G</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathrm {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> can be embedded in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper G normal upper L Subscript n Baseline left-parenthesis double-struck upper C right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">G</mml:mi> <mml:mi mathvariant="normal">L</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">C</mml:mi> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathrm {GL}_n(\mathbb {C})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Continuing the work initiated by Bardestani et al. [Compos. Math. 155 (2019), pp. 1618–1654], we address the problem of determining the faithful dimension of a finite <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-group of the form <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper G Subscript upper R Baseline colon-equal exp left-parenthesis German g Subscript upper R Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="script">G</mml:mi> </mml:mrow> <mml:mi>R</mml:mi> </mml:msub> <mml:mo>≔</mml:mo> <mml:mi>exp</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">g</mml:mi> </mml:mrow> <mml:mi>R</mml:mi> </mml:msub> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathscr {G}_R≔\exp (\mathfrak {g}_R)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> associated to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="German g Subscript upper R Baseline colon-equal German g circled-times Subscript double-struck upper Z Baseline upper R"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">g</mml:mi> </mml:mrow> <mml:mi>R</mml:mi> </mml:msub> <mml:mo>≔</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">g</mml:mi> </mml:mrow> <mml:msub> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">Z</mml:mi> </mml:mrow> </mml:msub> <mml:mi>R</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathfrak {g}_R≔\mathfrak {g}\otimes _\mathbb {Z}R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the Lazard correspondence, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="German g"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">g</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathfrak {g}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a nilpotent <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper Z"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">Z</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {Z}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Lie algebra and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> ranges over finite truncated valuation rings. Our first main result is that if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a finite field with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p Superscript f"> <mml:semantics> <mml:msup> <mml:mi>p</mml:mi> <mml:mi>f</mml:mi> </mml:msup> <mml:annotation encoding="application/x-tex">p^f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> elements and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is sufficiently large, then <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="m Subscript normal f normal a normal i normal t normal h normal f normal u normal l Baseline left-parenthesis script upper G Subscript upper R Baseline right-parenthesis equals f g left-parenthesis p Superscript f Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>m</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">f</mml:mi> <mml:mi mathvariant="normal">a</mml:mi> <mml:mi mathvariant="normal">i</mml:mi> <mml:mi mathvariant="normal">t</mml:mi> <mml:mi mathvariant="normal">h</mml:mi> <mml:mi mathvariant="normal">f</mml:mi> <mml:mi mathvariant="normal">u</mml:mi> <mml:mi mathvariant="normal">l</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="script">G</mml:mi> </mml:mrow> <mml:mi>R</mml:mi> </mml:msub> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>f</mml:mi> <mml:mi>g</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:msup> <mml:mi>p</mml:mi> <mml:mi>f</mml:mi> </mml:msup> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">m_\mathrm {faithful}(\mathscr {G}_R)=fg(p^f)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g left-parenthesis upper T right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>T</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">g(T)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> belongs to a finite list of polynomials <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g 1 comma ellipsis comma g Subscript k Baseline"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>g</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>g</mml:mi> <mml:mi>k</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">g_1,\ldots ,g_k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, with non-negative integer coefficients. The latter list of polynomials is uniquely determined by the Lie algebra <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="German g"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">g</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathfrak {g}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Furthermore, for each <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="1 less-than-or-equal-to i less-than-or-equal-to k"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>i</mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>k</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">1\le i\leq k</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the set of pairs <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis p comma f right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(p,f)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for which <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g equals g Subscript i"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>g</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">g=g_i</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a finite union of Cartesian products <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper P times script upper F"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="script">P</mml:mi> </mml:mrow> <mml:mo>×<!-- × --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="script">F</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathscr P\times \mathscr F</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper P"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="script">P</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathscr P</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a Frobenius set of prime numbers and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper F"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="script">F</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathscr F</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a subset of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper N"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">N</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that belongs to the Boolean algebra generated by arithmetic progressions. Previously, existence of such a polynomial-type formula for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="m Subscript normal f normal a normal i normal t normal h normal f normal u normal l Baseline left-parenthesis script upper G Subscript upper R Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>m</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">f</mml:mi> <mml:mi mathvariant="normal">a</mml:mi> <mml:mi mathvariant="normal">i</mml:mi> <mml:mi mathvariant="normal">t</mml:mi> <mml:mi mathvariant="normal">h</mml:mi> <mml:mi mathvariant="normal">f</mml:mi> <mml:mi mathvariant="normal">u</mml:mi> <mml:mi mathvariant="normal">l</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="script">G</mml:mi> </mml:mrow> <mml:mi>R</mml:mi> </mml:msub> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">m_\mathrm {faithful}(\mathscr {G}_R)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> was only established under the assumption that either <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f equals 1"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">f=1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> or <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is fixed. Next we formulate a conjectural polynomiality property for the value of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="m Subscript normal f normal a normal i normal t normal h normal f normal u normal l Baseline left-parenthesis script upper G Subscript upper R Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>m</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">f</mml:mi> <mml:mi mathvariant="normal">a</mml:mi> <mml:mi mathvariant="normal">i</mml:mi> <mml:mi mathvariant="normal">t</mml:mi> <mml:mi mathvariant="normal">h</mml:mi> <mml:mi mathvariant="normal">f</mml:mi> <mml:mi mathvariant="normal">u</mml:mi> <mml:mi mathvariant="normal">l</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="script">G</mml:mi> </mml:mrow> <mml:mi>R</mml:mi> </mml:msub> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">m_\mathrm {faithful}(\mathscr {G}_R)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the more general setting where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a finite truncated valuation ring, and prove special cases of this conjecture. In particular, we show that for a vast class of Lie algebras <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="German g"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">g</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathfrak {g}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that are defined by partial orders, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="m Subscript normal f normal a normal i normal t normal h normal f normal u normal l Baseline left-parenthesis script upper G Subscript upper R Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>m</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">f</mml:mi> <mml:mi mathvariant="normal">a</mml:mi> <mml:mi mathvariant="normal">i</mml:mi> <mml:mi mathvariant="normal">t</mml:mi> <mml:mi mathvariant="normal">h</mml:mi> <mml:mi mathvariant="normal">f</mml:mi> <mml:mi mathvariant="normal">u</mml:mi> <mml:mi mathvariant="normal">l</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="script">G</mml:mi> </mml:mrow> <mml:mi>R</mml:mi> </mml:msub> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">m_\mathrm {faithful}(\mathscr {G}_R)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is given by a single polynomial-type formula. Finally, we compute <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="m Subscript normal f normal a normal i normal t normal h normal f normal u normal l Baseline left-parenthesis script upper G Subscript upper R Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>m</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">f</mml:mi> <mml:mi mathvariant="normal">a</mml:mi> <mml:mi mathvariant="normal">i</mml:mi> <mml:mi mathvariant="normal">t</mml:mi> <mml:mi mathvariant="normal">h</mml:mi> <mml:mi mathvariant="normal">f</mml:mi> <mml:mi mathvariant="normal">u</mml:mi> <mml:mi mathvariant="normal">l</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="script">G</mml:mi> </mml:mrow> <mml:mi>R</mml:mi> </mml:msub> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">m_\mathrm {faithful}(\mathscr {G}_R)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> precisely in the case where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="German g"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">g</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathfrak {g}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the free metabelian nilpotent Lie algebra of class <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="c"> <mml:semantics> <mml:mi>c</mml:mi> <mml:annotation encoding="application/x-tex">c</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding="application/x-tex">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> generators and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a finite truncated valuation ring.
Action | Title | Year | Authors |
---|