On the stability of homogeneous equilibria in the Vlasov–Poisson system on R3

Type: Article

Publication Date: 2023-07-28

Citations: 2

DOI: https://doi.org/10.1088/1361-6382/acebb0

Abstract

Abstract The goal of this article is twofold. First, we investigate the linearized Vlasov–Poisson system around a family of spatially homogeneous equilibria in <?CDATA $\mathbb{R}^3$?> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mn>3</mml:mn></mml:msup></mml:math> (the unconfined setting). Our analysis follows classical strategies from physics (Binney and Tremaine 2008 Galactic Dynamics (Princeton University Press); Landau 1946 Acad. Sci. USSR. J. Phys. 10 25–34; Penrose 1960 Phys. Fluids 3 258–65) and their subsequent mathematical extensions (Bedrossian et al 2022 SIAM J. Math. Anal. 54 4379–406; Degond 1986 Trans. Am. Math. Soc. 294 435–53; Glassey and Schaeffer 1994 Transp. Theory Stat. Phys. 23 411–53; Grenier et al 2021 Math. Res. Lett. 28 1679–702; Han-Kwan et al 2021 Commun. Math. Phys. 387 1405–40; Mouhot and Villani 2011 Acta Math. 207 29–201). The main novelties are a unified treatment of a broad class of analytic equilibria and the study of a class of generalized Poisson equilibria. For the former, this provides a detailed description of the associated Green’s functions, including in particular precise dissipation rates (which appear to be new), whereas for the latter we exhibit explicit formulas. Second, we review the main result and ideas in our recent work (Ionescu et al 2022 (arXiv: 2205.04540 )) on the full global nonlinear asymptotic stability of the Poisson equilibrium in <?CDATA ${\mathbb{R}}^3$?> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:msup><mml:mrow><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow></mml:mrow><mml:mn>3</mml:mn></mml:msup></mml:math> .

Locations

  • Classical and Quantum Gravity - View - PDF
  • Zurich Open Repository and Archive (University of Zurich) - View - PDF

Similar Works

Action Title Year Authors
+ On the stability of homogeneous equilibria in the Vlasov-Poisson system on $\mathbb{R}^3$ 2023 Alexandru D. Ionescu
Benoît Pausader
Xuecheng Wang
Klaus Widmayer
+ PDF Chat On the Linearized Vlasov–Poisson System on the Whole Space Around Stable Homogeneous Equilibria 2021 Daniel Han-Kwan
Toan T. Nguyen
Frédéric Rousset
+ On the linearized Vlasov-Poisson system on the whole space around stable homogeneous equilibria 2020 Daniel Han-Kwan
Toan T. Nguyen
Frédéric Rousset
+ Nonlinear Landau damping for the Vlasov-Poisson system in $\R^3$: the Poisson equilibrium 2022 Alexandru D. Ionescu
Benoît Pausader
Xuecheng Wang
Klaus Widmayer
+ Linear stability of the spatially homogeneous equilibria of the Vlasov-Poisson system with collisions 1997 Lucio Demeio
+ Sharp estimates for screened Vlasov-Poisson system around Penrose-stable equilibria in $\mathbb{R}^d $, $ d\geq3$ 2022 Lingjia Huang
Quoc‐Hung Nguyen
Yiran Xu
+ PDF Chat A new proof of nonlinear Landau damping for the 3D Vlasov-Poisson system near Poisson equilibrium 2024 Quoc Hung Nguyen
Dongyi Wei
Zhifei Zhang
+ PDF Chat Linear stability of stationary solutions of the Vlasov-Poisson system in three dimensions 1995 J�rgen Batt
P. Morrison
Gerhard Rein
+ Stationary Solutions of the Flat Vlasov–Poisson System 2018 Jürgen Batt
E. Jörn
Yi Li
+ PDF Chat Derivative estimates for screened Vlasov-Poisson system around Penrose-stable equilibria 2020 Trinh T. Nguyen
+ PDF Chat Linear stability of stationary solutions of the Vlasov-Poisson system in three dimensions 1993 Jürgen Batt
G. Rein
P.J. Morrison
+ Linear stability of stationary solutions of the Vlasov-Poisson system in three dimensions 1993 Jürgen Batt
G. Rein
P.J. Morrison
+ Damping versus oscillations for a gravitational Vlasov-Poisson system 2023 Mahir Hadžić
Gerhard Rein
Matthew R. I. Schrecker
Christopher Straub
+ Asymptotic stability of equilibria for screened Vlasov-Poisson systems via pointwise dispersive estimates 2019 Daniel Han-Kwan
Toan T. Nguyen
Frédéric Rousset
+ PDF Chat Spectrum Analysis for the Vlasov–Poisson–Boltzmann System 2021 Hai-Liang Li
Tong Yang
Mingying Zhong
+ PDF Chat Asymptotic Stability of Equilibria for Screened Vlasov–Poisson Systems via Pointwise Dispersive Estimates 2021 Daniel Han-Kwan
Toan T. Nguyen
Frédéric Rousset
+ PDF Chat Long Time Estimates for the Vlasov–Maxwell System in the Non-relativistic Limit 2018 Daniel Han-Kwan
Toan T. Nguyen
Frédéric Rousset
+ Quasineutral limit for Vlasov–Poisson via Wasserstein stability estimates in higher dimension 2017 Daniel Han-Kwan
Mikaela Iacobelli
+ Derivative estimates for screened Vlasov-Poisson system around Penrose-stable equilibria 2020 Trinh T. Nguyen
+ PDF Chat Stability estimates for the Vlasov–Poisson system in p$p$‐kinetic Wasserstein distances 2024 Mikaela Iacobelli
Jonathan Junné