Universal quadratic forms and indecomposables in number fields: A survey

Type: Article

Publication Date: 2023-07-17

Citations: 4

DOI: https://doi.org/10.46298/cm.10896

Abstract

We give an overview of universal quadratic forms and lattices, focusing on the recent developments over the rings of integers in totally real number fields. In particular, we discuss indecomposable algebraic integers as one of the main tools.

Locations

  • Communications in Mathematics - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Universal quadratic forms and indecomposables in number fields: A survey 2023 Vítězslav Kala
+ Unimodular lattices over real quadratic fields 1994 Rudolf Scharlau
+ Indecomposable integers in real quadratic fields of odd discriminant 2018 Magdaléna Tinková
+ Universal and regular positive quadratic lattices over totally real number fields 1999 A. G. Earnest
+ Rings of Integers in Number Fields and Root Lattices 2020 Vladimir L. Popov
Yu. G. Zarhin
+ Indecomposable integers in real quadratic fields 2019 Magdaléna Tinková
Paul Voutier
+ Binary quadratic forms over rings of algebraic integers: a survey of recent results 1989 A. G. Earnest
+ Indecomposable quadratic lattices over global function fields 2015 Ruiqing Wang
+ Universal quadratic forms and Dedekind zeta functions 2023 Vítězslav Kala
Mentzelos Melistas
+ PDF Chat Minimal rank of universal lattices and number of indecomposable elements in real multiquadratic fields 2024 Siu Hang Man
+ Minimal rank of universal lattices and number of indecomposable elements in real multiquadratic fields 2023 Siu Hang Man
+ On the genera and the class number of unimodular lattices over the ring of integers in real quadratic fields 1990 Ichiro Takada
+ PDF Chat Sails for universal quadratic forms 2024 Vítězslav Kala
Siu Hang Man
+ A lower bound for the rank of a universal quadratic form with integer coefficients in a totally real number field 2018 Pavlo Yatsyna
+ Constellations in prime elements of number fields 2020 Wataru Kai
Masato Mimura
Akihiro Munemasa
Shin-ichiro Seki
Kiyoto Yoshino
+ Universal quadratic forms and Dedekind zeta functions 2024 Vítězslav Kala
Mentzelos Melistas
+ PDF Chat A lower bound for the rank of a universal quadratic form with integer coefficients in a totally real number field 2019 Pavlo Yatsyna
+ A lower bound for the rank of a universal quadratic form with integer coefficients in a totally real number field. 2018 Pavlo Yatsyna
+ Quadratic extensions of the integers, ℤ[√𝕕] 2018
+ FINITE QUADRATIC MODULES OVER NUMBER FIELDS AND THEIR ASSOCIATED WEIL REPRESENTATIONS (保型表現とその周辺 : RIMS研究集会報告集) 2013 Hati̇ce Boylan