Topological Strings on Non-commutative Resolutions

Type: Article

Publication Date: 2024-02-24

Citations: 5

DOI: https://doi.org/10.1007/s00220-023-04896-2

Abstract

Abstract In this paper we propose a definition of torsion refined Gopakumar–Vafa (GV) invariants for Calabi–Yau threefolds with terminal nodal singularities that do not admit Kähler crepant resolutions. Physically, the refinement takes into account the charge of five-dimensional BPS states under a discrete gauge symmetry in M-theory. We propose a mathematical definition of the invariants in terms of the geometry of all non-Kähler crepant resolutions taken together. The invariants are encoded in the A-model topological string partition functions associated to non-commutative (nc) resolutions of the Calabi–Yau. Our main example will be a singular degeneration of the generic Calabi–Yau double cover of $${\mathbb {P}}^3$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mrow> <mml:mi>P</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:math> and leads to an enumerative interpretation of the topological string partition function of a hybrid Landau–Ginzburg model. Our results generalize a recent physical proposal made in the context of torus fibered Calabi–Yau manifolds by one of the authors and clarify the associated enumerative geometry.

Locations

  • Communications in Mathematical Physics - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Refined open noncommutative Donaldson–Thomas invariants for small crepant resolutions 2011 Kentaro Nagao
+ PDF Chat Genus zero Gopakumar-Vafa invariants from open strings 2021 Andrés Collinucci
Andrea Sangiovanni
Roberto Valandro
+ Refined open non-commutative Donaldson-Thomas invariants for small crepant resolutions 2009 Kentaro Nagao
+ PDF Chat D-branes in Landau-Ginzburg models and algebraic geometry 2003 Anton Kapustin
Yi Li
+ PDF Chat Non-commutative Donaldson–Thomas invariants and the conifold 2008 Balázs Szendrői
+ PDF Chat Towards refining the topological strings on compact Calabi-Yau 3-folds 2021 Min-xin Huang
Sheldon Katz
Albrecht Klemm
+ PDF Chat Crepant resolutions and open strings II 2018 Andrea Brini
Renzo Cavalieri
+ PDF Chat Modular curves, the Tate-Shafarevich group and Gopakumar-Vafa invariants with discrete charges 2022 Thorsten Schimannek
+ PDF Chat Exact quantization conditions, toric Calabi-Yau and non-perturbative topological string 2017 Kaiwen Sun
Xin Wang
Min-xin Huang
+ Physics and geometry of knots-quivers correspondence 2018 Tobias Ekholm
Piotr Kucharski
Pietro Longhi
+ Physics and geometry of knots-quivers correspondence 2018 Tobias Ekholm
Piotr Kucharski
Pietro Longhi
+ The Real Topological String on a local Calabi-Yau 2009 Daniel Krefl
Johannes Walcher
+ PDF Chat Topological string amplitudes, complete intersection Calabi-Yau spaces and threshold corrections 2005 Albrecht Klemm
Maximilian Kreuzer
Erwin Riegler
Emanuel Scheidegger
+ PDF Chat On the Gopakumar–Ooguri–Vafa correspondence for Clifford–Klein 3-manifolds 2018 Andrea Brini
+ PDF Chat On the Gopakumar–Ooguri–Vafa correspondence for Clifford–Klein 3-manifolds 2018 Andrea Brini
+ Gopakumar-Vafa Invariants and Macdonald Formula 2023 Lutian Zhao
+ PDF Chat Towards a gauge theory interpretation of the real topological string 2016 Hirotaka Hayashi
Nicolò Piazzalunga
Ángel M. Uranga
+ PDF Chat Knot Invariants from Topological Recursion on Augmentation Varieties 2014 Jie Gu
Hans Jockers
Albrecht Klemm
Masoud Soroush
+ Chern-Simons theory on spherical Seifert manifolds, topological strings and integrable systems 2015 Gaëtan Borot
Andrea Brini
+ New non-commutative resolutions of determinantal Calabi-Yau threefolds from hybrid GLSM 2023 Sheldon Katz
Thorsten Schimannek