Perfectly Packing a Square by Squares of Nearly Harmonic Sidelength

Type: Article

Publication Date: 2023-07-01

Citations: 8

DOI: https://doi.org/10.1007/s00454-023-00523-y

Abstract

Abstract A well-known open problem of Meir and Moser asks if the squares of sidelength 1/ n for $$n\ge 2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> can be packed perfectly into a rectangle of area $$\sum _{n=2}^\infty n^{-2}=\pi ^2/6-1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msubsup> <mml:mo>∑</mml:mo> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:mi>∞</mml:mi> </mml:msubsup> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>π</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>/</mml:mo> <mml:mn>6</mml:mn> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> . In this paper we show that for any $$1/2&lt;t&lt;1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> <mml:mo>&lt;</mml:mo> <mml:mi>t</mml:mi> <mml:mo>&lt;</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> , and any $$n_0$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>n</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> that is sufficiently large depending on t , the squares of sidelength $$n^{-t}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mi>t</mml:mi> </mml:mrow> </mml:msup> </mml:math> for $$n\ge n_0$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥</mml:mo> <mml:msub> <mml:mi>n</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:math> can be packed perfectly into a square of area $$\sum _{n=n_0}^\infty n^{-2t}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msubsup> <mml:mo>∑</mml:mo> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>n</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:mi>∞</mml:mi> </mml:msubsup> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>2</mml:mn> <mml:mi>t</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> . This was previously known (if one packs a rectangle instead of a square) for $$1/2&lt;t\le 2/3$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> <mml:mo>&lt;</mml:mo> <mml:mi>t</mml:mi> <mml:mo>≤</mml:mo> <mml:mn>2</mml:mn> <mml:mo>/</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> </mml:math> (in which case one can take $$n_0=1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>n</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> ).

Locations

  • Discrete & Computational Geometry - View - PDF
  • arXiv (Cornell University) - View - PDF
  • PubMed - View
  • Discrete & Computational Geometry - View - PDF
  • arXiv (Cornell University) - View - PDF
  • PubMed - View
  • Discrete & Computational Geometry - View - PDF
  • arXiv (Cornell University) - View - PDF
  • PubMed - View

Similar Works

Action Title Year Authors
+ Perfectly packing a square by squares of nearly harmonic sidelength 2022 Terence Tao
+ Perfectly packing a square by squares of sidelength f(n)− 2022 Keiju Sono
+ PDF Packing Unit Squares in a Rectangle 2005 Hiroshi Nagamochi
+ Covering a square of side <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>n</mml:mi><mml:mo>+</mml:mo><mml:mi>ε</mml:mi></mml:math> with unit squares 2005 Alexander Soifer
+ Perfect packing of squares 2022 Antal Joós
+ Optimal Packings of 22 and 33 Unit Squares in a Square 2016 Wolfram Bentz
+ Optimal Packings of 22 and 33 Unit Squares in a Square 2016 Wolfram Bentz
+ PDF Chat Perfectly packing a cube by cubes of nearly harmonic sidelength 2023 Rory McClenagan
+ Efficient Packings of Unit Squares in a Large Square 2019 Fan Chung
Ron Graham
+ Perfectly packing a cube by cubes of nearly harmonic sidelength 2022 Rory McClenagan
+ PDF Chat A note on the Erd\H{o}s conjecture about square packing 2024 Junnosuke Koizumi
Takahiro Ueoro
+ Covering of a rectangle by squares 2020 Fedor Ozhegov
+ Covering of a rectangle by squares 2020 Fedor Ozhegov
+ Tightly Packed Squares 2008
+ PDF Optimal Packings of 13 and 46 Unit Squares in a Square 2010 Wolfram Bentz
+ Tiling a rectangle with the fewest squares 1994 Richard Kenyon
+ Tiling a rectangle with the fewest squares 1994 RICHARD L. KENYON
+ On Packing Almost Half of a Square with Anchored Rectangles: A Constructive Approach 2014 Sandip Banerjee
Aritra Banik
Bhargab B. Bhattacharya
Arijit Bishnu
Soumyottam Chatterjee
+ Inefficiency in packing squares with unit squares 1978 K. F. Roth
R. C. Vaughan
+ Smallest Squared Squares 2013 Lorenz Milla