<i>m</i>-Isometric tensor products

Type: Article

Publication Date: 2023-01-01

Citations: 0

DOI: https://doi.org/10.1515/conop-2022-0142

Abstract

Abstract Given Banach space operators <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mrow> <m:mi>S</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> </m:math> {S}_{i} and <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mrow> <m:mi>T</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> </m:math> {T}_{i} , <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>2</m:mn> </m:math> i=1,2 , we use elementary properties of the left and right multiplication operators to prove, that if the tensor products pair <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>S</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo>⊗</m:mo> <m:msub> <m:mrow> <m:mi>S</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>T</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo>⊗</m:mo> <m:msub> <m:mrow> <m:mi>T</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> \left({S}_{1}\otimes {S}_{2},{T}_{1}\otimes {T}_{2}) is strictly <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>m</m:mi> </m:math> m -isometric, i.e., <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msubsup> <m:mrow> <m:mi mathvariant="normal">Δ</m:mi> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>S</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo>⊗</m:mo> <m:msub> <m:mrow> <m:mi>S</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>T</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo>⊗</m:mo> <m:msub> <m:mrow> <m:mi>T</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> </m:mrow> <m:mrow> <m:mi>m</m:mi> </m:mrow> </m:msubsup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>I</m:mi> <m:mo>⊗</m:mo> <m:mi>I</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msubsup> <m:mrow> <m:mrow> <m:mo>∑</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>j</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mi>m</m:mi> </m:mrow> </m:msubsup> <m:msup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>j</m:mi> </m:mrow> </m:msup> <m:mfenced open="(" close=")"> <m:mrow> <m:mtable> <m:mtr> <m:mtd columnalign="center"> <m:mi>m</m:mi> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign="center"> <m:mi>j</m:mi> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> <m:msup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>S</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo>⊗</m:mo> <m:msub> <m:mrow> <m:mi>S</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>m</m:mi> <m:mo>−</m:mo> <m:mi>j</m:mi> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>T</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo>⊗</m:mo> <m:msub> <m:mrow> <m:mi>T</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>m</m:mi> <m:mo>−</m:mo> <m:mi>j</m:mi> </m:mrow> </m:msup> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:math> {\Delta }_{{S}_{1}\otimes {S}_{2},{T}_{1}\otimes {T}_{2}}^{m}\left(I\otimes I)={\sum }_{j=0}^{m}{\left(-1)}^{j}\left(\begin{array}{c}m\\ j\end{array}\right){\left({S}_{1}\otimes {S}_{2})}^{m-j}{\left({T}_{1}\otimes {T}_{2})}^{m-j}=0 , then there exist a non-zero scalar <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>c</m:mi> </m:math> c and positive integers <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mrow> <m:mi>m</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>m</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> <m:mo>≤</m:mo> <m:mi>m</m:mi> </m:math> {m}_{1},{m}_{2}\le m such that <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>m</m:mi> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mi>m</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:msub> <m:mrow> <m:mi>m</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:math> m={m}_{1}+{m}_{2}-1 , <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>S</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:mi>c</m:mi> <m:msub> <m:mrow> <m:mi>T</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> \left({S}_{1},c{T}_{1}) is strict- <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mrow> <m:mi>m</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> </m:math> {m}_{1} -isometric and <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mfenced open="(" close=")"> <m:mrow> <m:msub> <m:mrow> <m:mi>S</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:mfrac> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>c</m:mi> </m:mrow> </m:mfrac> <m:msub> <m:mrow> <m:mi>T</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> </m:mrow> </m:mfenced> </m:math> \left({S}_{2},\frac{1}{c}{T}_{2}\right) is strict <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mrow> <m:mi>m</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> </m:math> {m}_{2} -isometric.

Locations

Similar Works

Action Title Year Authors
+ Nilpotent perturbations of <i>m</i>-isometric and <i>m</i>-symmetric tensor products of commuting <i>d</i>-tuples of operators 2024 B. P. Duggal
In Hyoun Kim
+ PDF Chat <i>m</i>-isometric generalised derivations 2022 B. P. Duggal
I.H. Kim
+ The injective tensor product of ℒ<sub><i>p</i></sub>-algebras 1978 T. K. Carne
Andrew Tonge
+ Operator <i>m</i>-convex functions 2017 Jamal Rooin
Akram Alikhani
Mohammad Sal Moslehian
+ <i>n</i>‐Inner Product Spaces 1989 Aleksander Misiak
+ PDF Chat Approximation properties of tensor norms and operator ideals for Banach spaces 2020 Ju Myung Kim
+ Tensor Spaces (Tensor Product <i>U</i> ⊗ <i>V</i>) 2021
+ PDF Chat m-Isometric transformations of Hilbert space, I 1995 Jim Agler
Mark Stankus
+ The Injective Tensor Product of Banach Algebras which are <i>L</i> <sub>1</sub> -Spaces 1976 Hamish K. Milne
+ On the Bochner theorem on orthogonal operators 2002 Zinoviy Grinshpun
+ PDF Chat On the operator equations <i>ABA</i> = <i>A</i> <sup>2</sup> and <i>BAB</i> = <i>B</i> <sup>2</sup> on non-Archimedean Banach spaces 2023 Jawad Ettayb
+ PDF Chat Right and Left Weyl Operator Matrices in a Banach Space Setting 2021 Aichun Liu
Junjie Huang
Alatancang Chen
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi>k</mml:mi></mml:mrow></mml:math>-Smooth Points in Some Banach Spaces 2015 Abdulkareem Saleh Hamarsheh
+ On strict isometric and strict symmetric commuting $d$-tuples of Banach space operators 2023 B. P. Duggal
+ PDF Chat (<i>p</i>, <i>q</i>)-Compactness in spaces of holomorphic mappings 2024 A. Jiménez-Vargas
D. Ruiz-Casternado
+ PDF Chat Euclidean Structures and Operator Theory in Banach Spaces 2023 N. J. Kalton
Emiel Lorist
Lutz Weis
+ Productos tensoriales simétricos: teoría métrica, isomorfa y aplicaciones 2012 Daniel Galicer
+ PDF Chat The isometries of 𝐻¹_{}ℋ 1989 Michael Cambern
Krzysztof Jarosz
+ Infinite tensor products of Banach spaces I 1978 Tepper L. Gill
+ A note on operator tuples which are $(m,p)$-isometric as well as $(μ,\infty)$-isometric 2015 Philipp Hoffmann

Works That Cite This (0)

Action Title Year Authors