Ask the machine: systematic detection of wind-type outflows in low-mass X-ray binaries

Type: Article

Publication Date: 2023-06-22

Citations: 4

DOI: https://doi.org/10.1093/mnras/stad1895

Abstract

The systematic discovery of outflows in the optical spectra of low-mass X-ray binaries opened a new avenue for the study of the outburst evolution in these extreme systems. However, the efficient detection of such features in a continuously growing database requires the development of new analysis techniques with a particular focus on scalability, adaptability, and automatization. In this pilot study, we explore the use of machine learning algorithms to perform the identification of outflows in spectral line profiles observed in the optical range. We train and test the classifier on a simulated database, constructed through a combination of disc emission line profiles and outflow signatures, emulating typical observations of low-mass X-ray binaries. The final, trained classifier is applied to two sets of spectra taken during two bright outbursts that were particularly well covered, those of V404 Cyg (2015) and MAXI J1820+070 (2018). The resulting classification gained by this novel approach is overall consistent with that obtained through traditional techniques, while it simultaneously provides a number of key advantages over the latter, including the access to low velocity outflows. This study sets the foundations for future studies on large samples of spectra from low-mass X-ray binaries and other compact binaries.

Locations

  • Monthly Notices of the Royal Astronomical Society - View
  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF

Similar Works

Action Title Year Authors
+ Ask The Machine: Systematic detection of wind-type outflows in low-mass X-ray binaries 2023 D. Mata SĂĄnchez
T. Muñoz‐Darias
J. Casares
M. Huertas-Company
G. Panizo-Espinar
+ PDF Chat The 1989 and 2015 outbursts of V404 Cygni: a global study of wind-related optical features 2018 D. Mata SĂĄnchez
T. Muñoz‐Darias
J. Casares
P. A. Charles
M. Armas Padilla
J. A. FernĂĄndez-Ontiveros
F. Jiménez-Ibarra
P. G. Jonker
M. Linares
M. A. P. Torres
+ Unsupervised Machine Learning for the Classification of Astrophysical X-ray Sources 2024 VĂ­ctor Samuel PĂ©rez-DĂ­az
Juan Rafael MartĂ­nez-Galarza
Alexander Caicedo
R. D’Abrusco
+ PDF Chat Unsupervised machine learning for the classification of astrophysical X-ray sources 2024 VĂ­ctor Samuel PĂ©rez-DĂ­az
Juan Rafael MartĂ­nez-Galarza
Alexander Caicedo
R. D’Abrusco
+ PDF Chat Discovery of optical and infrared accretion disc wind signatures in the black hole candidate MAXI J1348–630 2022 G. Panizo-Espinar
M. Armas Padilla
T. Muñoz‐Darias
K. I. I. Koljonen
V. A. CĂșneo
J. SĂĄnchez-Sierras
D. Mata SĂĄnchez
J. Casares
J. M. Corral-Santana
R. P. Fender
+ PDF Chat Classifying Unidentified X-Ray Sources in the Chandra Source Catalog Using a Multiwavelength Machine-learning Approach 2022 Hui Yang
Jeremy Hare
Oleg Kargaltsev
I. M. Volkov
Steven Chen
Blagoy Rangelov
+ Classifying Unidentified X-ray Sources in the Chandra Source Catalog Using a Multiwavelength Machine-learning Approach 2022 Hui Yang
Jeremy Hare
Oleg Kargaltsev
I. M. Volkov
Steven Chen
Blagoy Rangelov
+ PDF Chat Searching for outflows in ultraluminous X-ray sources through high-resolution X-ray spectroscopy 2017 P. Kosec
C. Pinto
A. C. Fabian
D. J. Walton
+ PDF Chat A Machine Learning Approach For Classifying Low-mass X-ray Binaries Based On Their Compact Object Nature 2020 Rohan Pattnaik
Kaushal Kumar Sharma
Kevin Alabarta
D. Altamirano
M. Chakraborty
Ajit Kembhavi
Mariano MĂ©ndez
Jakub K. Orwat-Kapola
+ PDF Chat Accretion disc winds imprint distinct signatures in the optical variability spectrum of black hole transients 2025 F. Vincentelli
T. Muñoz‐Darias
+ The current state of disk wind observations in BHLMXBs through X-ray absorption lines in the iron band 2023 Maxime Parra
P.‐O. Petrucci
S. Bianchi
V. E. Gianolli
F. Ursini
G. Ponti
+ Population of X-ray Sources in the Intermediate-Age Cluster NGC 3532: a Test Bed for Machine-Learning Classification 2022 Steven Chen
Oleg Kargaltsev
Hui Yang
Jeremy Hare
I. M. Volkov
Blagoy Rangelov
John A. Tomsick
+ PDF Chat Revealing the ultrafast outflow in IRAS 13224−3809 through spectral variability 2017 M. L. Parker
William Alston
D J K Buisson
A. C. Fabian
Jiachen Jiang
Erin Kara
A. Lohfink
C. Pinto
C. S. Reynolds
+ PDF Chat Ionized emission and absorption in a large sample of ultraluminous X-ray sources 2021 P. Kosec
C. Pinto
C. S. Reynolds
M. Guainazzi
Erin Kara
D. J. Walton
A. C. Fabian
M. L. Parker
I. Valtchanov
+ PDF Chat A closer look at the origin of LINER emission and its connection to evolved stars with a machine learning classification scheme 2024 Ahmad Nemer
Ivan Katkov
Joseph Gelfand
Changhyun Cho
+ Machine Learning in Astronomy: a practical overview 2019 Dalya Baron
+ The relation between X-ray and UV emission in quasars 2024 S. Bisogni
+ PDF Chat Photometric Selection of type 1 Quasars in the XMM-LSS Field with Machine Learning and the Disk-Corona Connection 2024 Jian Huang
Bin Luo
W. N. Brandt
Ying Chen
Qingling Ni
Yongquan Xue
Zijian Zhang
+ The relation between X-ray and UV emission in quasars 2023 S. Bisogni
+ PDF Chat Spectroscopic observations of the machine-learning selected anomaly catalogue from the AllWISE Sky Survey 2020 A. Solarz
R. Thomas
F. M. Montenegro‐Montes
M. Gromadzki
E. Donoso
M. P. Koprowski
Ɓ. Wyrzykowski
C. DĂ­az
E. Sani
Maciej Bilicki

Works Cited by This (46)

Action Title Year Authors
+ PDF Chat Infrared [Fe<scp>ii</scp>] Emission from P Cygni’s Nebula: Atomic Data, Mass, Kinematics, and the 1600 AD Outburst 2006 Nathan Smith
Patrick Hartigan
+ PDF Chat Machine learning for transient discovery in Pan-STARRS1 difference imaging 2015 D. E. Wright
S. J. Smartt
K. Smith
Paul W. Miller
R. Kotak
A. Rest
W. S. Burgett
K. C. Chambers
H. Flewelling
K. W. Hodapp
+ PDF Chat Optical Spectroscopy of GRO J1655−40 2000 Roberto Soria
Kinwah Wu
R. W. Hunstead
+ PDF Chat Optical and near-infrared spectroscopy of the black hole GX 339−4 – II. The spectroscopic content in the low/hard and high/soft states★ 2014 Farid Rahoui
M. Coriat
Julia C. Lee
+ PDF Chat A Black Hole Nova Obscured by an Inner Disk Torus 2013 J. M. Corral-Santana
J. Casares
T. Muñoz‐Darias
P. RodrĂ­guez-Gil
T. Shahbaz
M. A. P. Torres
C. Zurita
A. A. Tyndall
+ PDF Chat Going deeper with convolutions 2015 Christian Szegedy
Wei Liu
Yangqing Jia
Pierre Sermanet
Scott Reed
Dragomir Anguelov
Dumitru Erhan
Vincent Vanhoucke
Andrew Rabinovich
+ PDF Chat SN 2009ip and SN 2010mc: core-collapse Type IIn supernovae arising from blue supergiants 2013 Nathan Smith
Jon C. Mauerhan
J. L. Prieto
+ PDF Chat Optical Spectroscopy of the X‐Ray Transient XTE J1118+480 in Outburst 2001 G. Dubus
Rita S. J. Kim
Kristen Menou
Paula Szkody
David V. Bowen
+ PDF Chat A catalogue of low-mass X-ray binaries in the Galaxy, LMC, and SMC (Fourth edition) 2007 Q. Z. Liu
J. van Paradijs
E. P. J. van den Heuvel
+ PDF Chat Using machine learning for discovery in synoptic survey imaging data 2013 Henrik Brink
Joseph W. Richards
D. Poznanski
J. S. Bloom
John Rice
Sahand Negahban
Martin J. Wainwright