Leray Numbers of Tolerance Complexes

Type: Article

Publication Date: 2023-06-05

Citations: 1

DOI: https://doi.org/10.1007/s00493-023-00044-5

Abstract

Abstract Let K be a simplicial complex on vertex set V . K is called d - Leray if the homology groups of any induced subcomplex of K are trivial in dimensions d and higher. K is called d - collapsible if it can be reduced to the void complex by sequentially removing a simplex of size at most d that is contained in a unique maximal face. Motivated by results of Eckhoff and of Montejano and Oliveros on “tolerant” versions of Helly’s theorem, we define the t - tolerance complex of K , $${\mathcal {T}}_{t}(K)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>T</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>K</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , as the simplicial complex on vertex set V whose simplices are formed as the union of a simplex in K and a set of size at most t . We prove that for any d and t there exists a positive integer h ( t , d ) such that, for every d -collapsible complex K , the t -tolerance complex $${\mathcal {T}}_t(K)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>T</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>K</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> is h ( t , d )-Leray. As an application, we present some new tolerant versions of the colorful Helly theorem.

Locations

Similar Works

Action Title Year Authors
+ Leray numbers of tolerance complexes 2021 Minki Kim
Alan Lew
+ PDF Chat Dimension Gaps between Representability and Collapsibility 2008 Jiřı́ Matoušek
Martin Tancer
+ On the gap between representability and collapsibility 2008 Jiřı́ Matoušek
Martin Tancer
+ Extensions of the Colorful Helly Theorem for $d$-collapsible and $d$-Leray complexes 2023 Minki Kim
Alan Lew
+ PDF Chat Vertex-Minimal Triangulation of Complexes with Homology 2025 J. Kogan
+ PDF Chat Simplicial homeomorphs and trace-bounded hypergraphs 2022 Jason Long
Bhargav Narayanan
Corrine Yap
+ PDF Chat Coboundary expansion, equivariant overlap, and crossing numbers of simplicial complexes 2023 Uli Wagner
Pascal Wild
+ Combinatorial Lefschetz theorems beyond positivity 2018 Karim Adiprasito
+ A collection of nonfilling multicurve complexes 2015 Carlos Barrera-Rodriguez
+ On Vietoris--Rips complexes (with scale 3) of hypercube graphs 2022 Samir Shukla
+ The face numbers of homology spheres 2017 Kai Fong Ernest Chong
Tiong Seng Tay
+ Combinatorial Lefschetz theorems beyond positivity 2018 Karim Adiprasito
+ PDF Chat A generalization of k-Cohen–Macaulay simplicial complexes 2011 Hassan Haghighi
Siamak Yassemi
Rahim Zaare-Nahandi
+ Topology and combinatorics of 'unavoidable complexes' 2016 Duško Jojić
Siniša T. Vrećica
Rade T. Živaljević
+ 2-LC triangulated manifolds are exponentially many 2021 Bruno Benedetti
Marta Pavelka
+ Minors in random and expanding hypergraphs 2011 Uli Wagner
+ Global Rigidity of Triangulated Manifolds 2022 James Cruickshank
Bill Jackson
Shin‐ichi Tanigawa
+ PDF Chat The augmented marking complex of a surface 2016 Matthew Gentry Durham
+ 2-LC triangulated manifolds are exponentially many 2023 Bruno Benedetti
Marta Pavelka
+ Hamiltonian and Pseudo-Hamiltonian Cycles and Fillings In Simplicial Complexes 2019 Rogers Mathew
Ilan Newman
Yuri Rabinovich
Deepak Rajendraprasad