A New Construction of Nonlinear Codes via Algebraic Function Fields

Type: Article

Publication Date: 2023-05-26

Citations: 1

DOI: https://doi.org/10.1109/tit.2023.3280345

Abstract

In coding theory, constructing codes with good parameters is one of the most important and fundamental problems. A great many good codes have been constructed over alphabets of sizes equal to prime powers, however, good block codes over other alphabet sizes are rare. In this paper, we provide a new explicit construction of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$(q+1)$ </tex-math></inline-formula> -ary nonlinear codes via algebraic function fields, where <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula> is a prime power. Our codes are constructed by evaluating rational functions at all rational places of an algebraic function field. Compared with algebraic geometry codes, the main difference is that we allow rational functions to be evaluated at pole places. After evaluating rational functions from a union of Riemann-Roch spaces, we obtain a family of nonlinear codes over the alphabet <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathbb {F}_{q}\cup \{\infty \}$ </tex-math></inline-formula> . It turns out that our codes have better parameters than those obtained from MDS codes or good algebraic geometry codes via code alphabet extension and restriction.

Locations

  • arXiv (Cornell University) - View - PDF
  • IEEE Transactions on Information Theory - View

Similar Works

Action Title Year Authors
+ PDF Chat A New Construction of Nonlinear Codes via Rational Function Fields 2020 Lingfei Jin
Liming Ma
Chaoping Xing
+ A new construction of nonlinear codes via algebraic function fields 2022 Shu Liu
Liming Ma
Ting-Yi Wu
Chaoping Xing
+ A new construction of nonlinear codes via rational function fields 2019 Lingfei Jin
Liming Ma
Chaoping Xing
+ Algebraic Manipulation Detection Codes via Highly Nonlinear Functions 2020 Minfeng Shao
Ying Miao
+ PDF Chat Encoding of algebraic geometry codes with quasi-linear complexity $O(N\log N)$ 2024 Songsong Li
Shu Liu
Liming Ma
Yunqi Wan
Chaoping Xing
+ A new construction of Algebraic Geometry code using Trace function 2020 Nupur Patanker
Sanjay Kumar Singh
+ Subfield codes of linear codes from perfect nonlinear functions and their duals 2020 Dabin Zheng
Xiaoqiang Wang
Yayao Li Yayao Li
Mu Yuan
+ Subfield Codes of Linear Codes from Perfect Nonlinear Functions and Their Duals 2022 Dabin Zheng
Xiaoqiang Wang
Yayao Li Yayao Li
Mu Yuan
+ Highly nonlinear functions over finite fields 2019 Kai‐Uwe Schmidt
+ Highly nonlinear functions over finite fields 2019 Kai‐Uwe Schmidt
+ On construction and generalization of algebraic geometry codes 2000 Ryutaroh Matsumoto
Shinji Miura
+ On the Construction of Algebraic-Geometric Codes 2006 Hong Du
Zhuojun Liu
Changyan Di
+ PDF Chat Binary Sequences With a Low Correlation via Cyclotomic Function Fields 2022 Lingfei Jin
Liming Ma
Chaoping Xing
+ A function field approach toward good polynomials for optimal LRC codes. 2021 Ruikai Chen
Sihem Mesnager
+ A New Construction of Block Codes From Algebraic Curves 2015 Lingfei Jin
+ PDF Chat Fractional decoding of algebraic geometry codes over extension fields 2024 Eduardo Camps-Moreno
Gretchen L. Matthews
Welington Santos
+ Explicit construction of codes on an asymptotically bad tower of function fields 2003 WeiHsin Gu
Chung-Chin Lu
+ ON THE CONSTRUCTION OF ALGEBRAIC-GEOMETRIC CODES 2000 Du Hon
+ PDF Chat Constructions of linear codes with small hulls from association schemes 2020 Ye Wang
Ran Tao
+ Advances in Algebraic Geometry Codes 2008

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (11)

Action Title Year Authors
+ Rational Points on Curves over Finite Fields 1995 Søren Have Hansen
+ PDF Chat Algebraic Curves over a Finite Field 2008 J. W. P. Hirschfeld
Gábor Korchmáros
Fernando Torres
+ PDF Chat None 2000 Arnaldo Garcia
Henning Stichtenoth
Chaoping Xing
+ PDF Chat A new family of maximal curves over a finite field 2008 Massimo Giulietti
Gábor Korchmáros
+ Towards a characterization of subfields of the Deligne–Lusztig function fields 2013 Alp Bassa
Liming Ma
Chaoping Xing
Sze Ling Yeo
+ PDF Chat The Nordstrom-Robinson code is algebraic-geometric 1997 Judy L. Walker
+ On subfields of the Hermitian function field involving the involution automorphism 2018 Liming Ma
Chaoping Xing
+ The complete list of genera of quotients of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msub><mml:mrow><mml:mi mathvariant="double-struck">F</mml:mi></mml:mrow><mml:mrow><mml:msup><mml:mrow><mml:mi>q</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:msub></mml:math>-maximal Hermitian curve for q ≡ 1 (mod 4) 2020 Maria Montanucci
Giovanni Zini
+ PDF Chat A new family of maximal curves 2018 Peter Beelen
Maria Montanucci
+ PDF Chat An upper bound on the minimum weight of Type II <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mi mathvariant="double-struck">Z</mml:mi><mml:mrow><mml:mn>2</mml:mn><mml:mi>k</mml:mi></mml:mrow></mml:msub></mml:math>-codes 2010 Masaaki Harada
Tsuyoshi Miezaki