PETAL: Physics Emulation Through Averaged Linearizations for Solving Inverse Problems

Type: Preprint

Publication Date: 2023-01-01

Citations: 2

DOI: https://doi.org/10.48550/arxiv.2305.11056

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat TAE: A Model-Constrained Tikhonov Autoencoder Approach for Forward and Inverse Problems 2024 Hai V. Nguyen
Tan Bui‐Thanh
+ PDF Chat Taen: A Model-Constrained Tikhonov Autoencoder Network for Forward and Inverse Problems 2025 Hai V. Nguyen
Tan Bui‐Thanh
Clint Dawson
+ PDF Chat Solving Inverse Problems with Model Mismatch using Untrained Neural Networks within Model-based Architectures 2024 Peimeng Guan
Naveed Iqbal
Mark A. Davenport
Mudassir Masood
+ Accelerating Least Squares Imaging Using Deep Learning Techniques 2019 Janaki Vamaraju
Jeremy Vila
Mauricio Araya‐Polo
Debanjan Datta
Mohamed Sid‐Ahmed
Mrinal K. Sen
+ Learned multiphysics inversion with differentiable programming and machine learning 2023 Mathias Louboutin
Ziyi Yin
Rafael Orozco
Thomas J. Grady
Ali Siahkoohi
Gabrio Rizzuti
Philipp Witte
Olav MĂžyner
Gerard Gorman
Felix J. Herrmann
+ PDF Chat Learning in Sinusoidal Spaces with Physics-Informed Neural Networks 2021 Jian Cheng Wong
Chin Chun Ooi
Abhishek Gupta
Yew-Soon Ong
+ Learning in Sinusoidal Spaces with Physics-Informed Neural Networks 2021 Jian Cheng Wong
Chinchun Ooi
Abhishek Gupta
Yew-Soon Ong
+ PDF Chat Learning in Sinusoidal Spaces with Physics-Informed Neural Networks 2022 Jian Cheng Wong
Chin Chun Ooi
Abhishek Gupta
Yew-Soon Ong
+ Simpinns: Simulation-Driven Physics-Informed Neural Networks for Enhanced Performance in Nonlinear Inverse Problems 2023 Sidney Besnard
Frédéric Jurie
Jalal Fadili
+ Randomized Physics-Informed Machine Learning for Uncertainty Quantification in High-Dimensional Inverse Problems 2023 Yifei Zong
David A. Barajas‐Solano
Alexandre M. Tartakovsky
+ PDF Chat Learned multiphysics inversion with differentiable programming and machine learning 2023 Mathias Louboutin
Ziyi Yin
Rafael Orozco
Thomas J. Grady
Ali Siahkoohi
Gabrio Rizzuti
Philipp Witte
Olav MĂžyner
Gerard Gorman
Felix J. Herrmann
+ Physics Constrained Learning for Data-driven Inverse Modeling from Sparse Observations 2020 Kailai Xu
Eric Darve
+ PDF Chat Physics Constrained Learning for Data-driven Inverse Modeling from Sparse Observations 2020 Kailai Xu
Eric Darve
+ Enhancing Gravity Currents Analysis through Physics-Informed Neural Networks: Insights from Experimental Observations 2023 Mickaël G. Delcey
Yoann Cheny
Jean Schneider
Simon Becker
Yvan Dossmann
SĂ©bastien Kiesgen de Richter
+ Physics constrained learning for data-driven inverse modeling from sparse observations 2022 Kailai Xu
Eric Darve
+ Eikonal solution using physics-informed neural networks 2020 Umair bin Waheed
Ehsan Haghighat
Tariq Alkhalifah
Chao Song
Qi Hao
+ PDF Chat Efficient Training of Transfer Mapping in Physics-Infused Machine Learning Models of UAV Acoustic Field 2022 R. Iqbal
Amir Behjat
Revant Adlakha
Jesse Callanan
Mostafa Nouh
Souma Chowdhury
+ PDF Chat Multi-Frequency Progressive Refinement for Learned Inverse Scattering 2024 Owen Melia
Olivia Tsang
Vasileios Charisopoulos
Yuehaw Khoo
Jeremy G. Hoskins
Rebecca Willett
+ PDF Chat Data-Aided Underwater Acoustic Ray Propagation Modeling 2023 Kexin Li
Mandar Chitre
+ Efficient Training of Transfer Mapping in Physics-Infused Machine Learning Models of UAV Acoustic Field 2022 R. Iqbal
Amir Behjat
Revant Adlakha
Jesse Callanan
Mostafa Nouh
Souma Chowdhury

Works Cited by This (0)

Action Title Year Authors