Low- and high-energy localization landscapes for tight-binding Hamiltonians in two-dimensional lattices

Type: Article

Publication Date: 2023-05-15

Citations: 1

DOI: https://doi.org/10.1103/physrevresearch.5.023102

Abstract

Localization of electronic wave functions in modern two-dimensional (2D) materials such as graphene can impact drastically their transport and magnetic properties. The recent localization landscape (LL) theory has brought many tools and theoretical results to understand such localization phenomena in the continuous setting, but with very few extensions so far to the discrete realm or to tight-binding Hamiltonians. In this paper, we show how this approach can be extended to almost all known 2D lattices and propose a systematic way of designing LL even for higher dimensions. We demonstrate in detail how this LL theory works and predicts accurately not only the locations, but also the energies of localized eigenfunctions in the low- and high-energy regimes for the honeycomb and hexagonal lattices, making it a highly promising tool for investigating the role of disorder in these materials.

Locations

  • Physical Review Research - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF

Similar Works

Action Title Year Authors
+ Low and high-energy localization landscapes for tight-binding Hamiltonians in 2D lattices 2022 Luis A. Razo-López
Geoffroy J. Aubry
Marcel Filoche
Fabrice Mortessagne
+ PDF Chat Low and high-energy localization landscapes for tight-binding Hamiltonians in 2D lattices 2022 Luis A. Razo-López
Geoffroy J. Aubry
Marcel Filoche
Fabrice Mortessagne
+ PDF Chat Localization and interactions in topological and nontopological bands in two dimensions 2019 Akshay Krishna
Matteo Ippoliti
R. N. Bhatt
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi mathvariant="script">L</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:math> localization landscape for highly excited states 2020 Loïc Herviou
Jens H. Bardarson
+ PDF Chat Flat-band (de)localization emulated with a superconducting qubit array 2024 Ilan T. Rosen
Sarah E. Muschinske
Cora N. Barrett
David A. Rower
Rabindra Nath Das
David Kim
Bethany Niedzielski
Meghan Schuldt
Kyle Serniak
Mollie E. Schwartz
+ The Hubbard Model 2021 Daniel P. Arovas
Erez Berg
Steven A. Kivelson
S. Raghu
+ PDF Chat The Hubbard Model 2021 Daniel P. Arovas
Erez Berg
Steven A. Kivelson
S. Raghu
+ Coexistence of extended and localized states in one-dimensional systems 2018 André M. C. Souza
Roberto F. S. Andrade
+ Coexistence of extended and localized states in one-dimensional systems 2018 André M. C. Souza
Roberto F. S. Andrade
+ Designing flat-band tight-binding models with tunable multifold band touching points 2021 Ansgar Graf
Frédéric Piéchon
+ PDF Chat Designing flat-band tight-binding models with tunable multifold band touching points 2021 Ansgar Graf
Frédéric Piéchon
+ PDF Chat Unified real-space construction scheme for flat bands based on symmetric compact localized states 2024 Rui-Heng Liu
Xin Liu
+ Anderson localisation in two dimensions: insights from Localisation Landscape Theory, exact diagonalisation, and time-dependent simulations 2020 SS Shamailov
D. J. Brown
TA Haase
M. D. Hoogerland
+ Designing effective lattices for two-body bound states: From interaction-induced flat bands to higher-order topological insulators 2019 Grazia Salerno
Giandomenico Palumbo
Nathan Goldman
Marco Di Liberto
+ PDF Chat Dynamics of electrons in 2D materials 2020 Sami Siraj-Dine
+ Anderson localisation in two dimensions: insights from Localisation Landscape Theory, exact diagonalisation, and time-dependent simulations 2020 Sophie S. Shamailov
Dylan Brown
Thomas Haase
M. D. Hoogerland
+ PDF Chat Isolated flat bands and spin-1 conical bands in two-dimensional lattices 2010 Dmitry Green
Luiz H. Santos
Claudio Chamon
+ PDF Chat Localization and mobility edges in non-Hermitian continuous quasiperiodic systems 2024 Xiang-Ping Jiang
Ziqi Liu
Yayun Hu
Lei Pan
+ Numerical Evidence for Many-Body Localization in Two and Three Dimensions 2021 Eli Chertkov
Benjamin Villalonga
Bryan K. Clark
+ PDF Chat Report on 2008.05442v2 2021 Sophie S. Shamailov
D Brown
Thomas Haase

Works Cited by This (19)

Action Title Year Authors
+ PDF Chat Tight-binding couplings in microwave artificial graphene 2013 Matthieu Bellec
Ulrich Kuhl
Gilles Montambaux
Fabrice Mortessagne
+ PDF Chat Three-dimensional localization of ultracold atoms in an optical disordered potential 2012 Fred Jendrzejewski
A. Bernard
Kilian Müller
Patrick Cheinet
Vincent Josse
Marie Piraud
Luca Pezzè
Laurent Sanchez-Palencia
A. Aspect
Philippe Bouyer
+ PDF Chat Localization of ultrasound in a three-dimensional elastic network 2008 Hefei Hu
Anatoliy Strybulevych
J. H. Page
S. E. Skipetrov
B. A. van Tiggelen
+ PDF Chat Gravitational Anderson Localization 2013 Ira Z. Rothstein
+ PDF Chat Effective Confining Potential of Quantum States in Disordered Media 2016 Douglas N. Arnold
Guy David
David Jerison
Svitlana Mayboroda
Marcel Filoche
+ 2D materials and van der Waals heterostructures 2016 Kostya S. Novoselov
Artem Mishchenko
Alexandra Carvalho
A. H. Castro Neto
+ PDF Chat Localization landscape theory of disorder in semiconductors. I. Theory and modeling 2017 Marcel Filoche
Marco Piccardo
Yuh‐Renn Wu
Chi-Kang Li
Claude Weisbuch
Svitlana Mayboroda
+ PDF Chat Computing Spectra without Solving Eigenvalue Problems 2019 Douglas N. Arnold
Guy David
Marcel Filoche
David Jerison
Svitlana Mayboroda
+ PDF Chat Universality of fold-encoded localized vibrations in enzymes 2019 Yann Chalopin
Francesco Piazza
Svitlana Mayboroda
Claude Weisbuch
Marcel Filoche
+ PDF Chat Localization landscape for Dirac fermions 2020 G. Lemut
M. J. Pacholski
O. Ovdat
Aurélien Grabsch
J. Tworzydło
C. W. J. Beenakker