Approximation using a modified type of Bernstein operators

Type: Article

Publication Date: 2022-12-01

Citations: 1

DOI: https://doi.org/10.29072/basjs.20220303

Abstract

A new generalization for the Bernstein-Kantorovich operator with a parameter is proposed in this study. First, we prove the Korovkin type approximation theorem, then we provide the Voronovskaja type theorem for our generalization, demonstrating that the order of approximation is improved, making the approximation by our operators better than the original Kantorovich, and finally, we provide some numerical data for two test functions to support the study.

Locations

  • BASRA JOURNAL OF SCIENCE - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat A NEW KIND OF THE VARIANT OF THE MODIFIED BERNSTEIN-KANTOROVICH OPERATORS DEFINED BY ¨OZARSLAN AND DUMAN 2021 Abhishek Kumar
+ Parametric generalization of the modified Bernstein-Kantorovich operators 2023 Kadir Kanat
Melek Sofyalıoğlu
Selin Erdal
+ Theoretical Validation and Comparative Analysis of Higher Order Modified Bernstein Operators 2024 Mahima Tomar
Naokant Deo
+ PDF Chat A new variant of the modified Bernstein-Kantorovich operators defined by Özarslan and Duman 2023 Abhishek Kumar
+ PDF Chat A numerical comparative study of generalized Bernstein-Kantorovich operators 2021 Uğur Kadak
Faruk Özger
+ PDF Chat Approximation properties of λ-Bernstein operators 2018 Qing‐Bo Cai
Bo-Yong Lian
Guorong Zhou
+ PDF Chat Approximation by Bernstein-Kantorovich type operators based on beta function 2023 L. Aharouch
Khursheed J‎. ‎Ansari
+ Approximation properties of the new type generalized Bernstein-Kantorovich operators 2021 Mustafa Kara
+ PDF Chat Approximation properties of modified Kantorovich type (p,q)-Bernstein operators 2021 Kan Yu
Wen-Tao Cheng
Lig ng Fan
Xiaol ng Zhou
+ ψ$$ \psi $$‐Bernstein–Kantorovich operators 2024 Hüseyin Aktuğlu
Mustafa Kara
Erdem Baytunç
+ A new kind of λ-Bernstein operators with better approximation 2024 Shagufta Rahman
+ PDF Chat Approximation properties of Bernstein-Kantorovich type operators of two variables 2019 Döne Karahan
Aydın İZGİ
+ Generalized Bernstein‐Kantorovich–type operators on a triangle 2019 Arun Kajla
+ PDF Chat GENERALIZED BERNSTEIN-KANTOROVICH OPERATORS OF BLENDING TYPE 2019 Arun Kajla
+ PDF Chat Some Statistical and Direct Approximation Properties for a New Form of the Generalization of q-Bernstein Operators with the Parameter λ 2024 Lianta Su
Esma Kangal
Ülkü Dinlemez
Qing‐Bo Cai
+ Construction of a new family of Bernstein‐Kantorovich operators 2017 S. A. Mohiuddine
Tuncer Acar
Abdullah Alotaibi
+ Some approximation results by Bernstein-Kantorovich operators based on (p,q)-integers 2015 M. Mursaleen
Khursheed J‎. ‎Ansari
Asif Khan
+ On (p,q)-analogue of Bernstein Operators 2015 M. Mursaleen
Khursheed J‎. ‎Ansari
Asif Khan
+ Approximation by a Kantorovich type q-Bernstein-Stancu operators 2015 M. Mursaleen
Khursheed J‎. ‎Ansari
Asif Khan
+ PDF Chat Fractional $\alpha$-Bernstein-Kantorovich operators of order $\beta$: A new construction and approximation results 2024 Jaspreet Kaur
Meenu Goyal
Khursheed J‎. ‎Ansari