Explaining dark matter halo density profiles with neural networks

Type: Preprint

Publication Date: 2023-01-01

Citations: 2

DOI: https://doi.org/10.48550/arxiv.2305.03077

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Explaining Dark Matter Halo Density Profiles with Neural Networks 2024 Luisa Lucie-Smith
Hiranya V. Peiris
Andrew Pontzen
+ PDF Chat Discovering the building blocks of dark matter halo density profiles with neural networks 2022 Luisa Lucie-Smith
Hiranya V. Peiris
Andrew Pontzen
B. Nord
Jeyan Thiyagalingam
Davide Piras
+ Insights into the origin of halo mass profiles from machine learning 2022 Luisa Lucie-Smith
Susmita Adhikari
Risa H. Wechsler
+ PDF Chat An interpretable machine-learning framework for dark matter halo formation 2019 Luisa Lucie-Smith
Hiranya V. Peiris
Andrew Pontzen
+ PDF Chat The scatter in the galaxy–halo connection: a machine learning analysis 2022 Richard Stiskalek
Deaglan J. Bartlett
Harry Desmond
Dhayaa Anbajagane
+ Modelling the galaxy-halo connection with semi-recurrent neural networks 2022 Harry George Chittenden
Rita Tojeiro
+ SHAPing the Gas: Understanding Gas Shapes in Dark Matter Haloes with Interpretable Machine Learning 2020 Luis Fernando Machado Poletti Valle
Camille Avestruz
David J Barnes
Arya Farahi
Erwin T. Lau
Daisuke Nagai
+ PDF Chat Modelling the galaxy–halo connection with semi-recurrent neural networks 2022 Harry George Chittenden
Rita Tojeiro
+ Revealing the Galaxy–Halo Connection through Machine Learning 2023 Ryan Hausen
Brant Robertson
Hanjue Zhu
Nickolay Y. Gnedin
Piero Madau
Evan E. Schneider
Bruno Villasenor
Nicole E. Drakos
+ Deep learning insights into cosmological structure formation 2020 Luisa Lucie-Smith
Hiranya V. Peiris
Andrew Pontzen
B. Nord
Jeyan Thiyagalingam
+ PDF Chat Machine learning cosmological structure formation 2018 Luisa Lucie-Smith
Hiranya V. Peiris
Andrew Pontzen
Michelle Lochner
+ PDF Chat Revealing the Galaxy–Halo Connection through Machine Learning 2023 Ryan Hausen
Brant Robertson
Hanjue Zhu
Nickolay Y. Gnedin
Piero Madau
Evan E. Schneider
Bruno Villasenor
Nicole E. Drakos
+ Machine Learning the Dark Matter Halo Mass of Milky Way-Like Systems 2023 Elaheh Hayati
Peter Behroozi
Ekta Patel
+ PDF Chat <scp>shap</scp>ing the gas: understanding gas shapes in dark matter haloes with interpretable machine learning 2021 Luis Fernando Machado Poletti Valle
Camille Avestruz
David J Barnes
Arya Farahi
Erwin T. Lau
Daisuke Nagai
+ PDF Chat MAHGIC: a Model Adapter for the Halo–Galaxy Inter-Connection 2021 Yangyao Chen
H. J. Mo
Cheng Li
Kai Wang
Huiyuan Wang
Xiaohu Yang
Youcai Zhang
Neal Katz
+ PDF Chat Evaluating the galaxy formation histories predicted by a neural network in pure dark matter simulations 2024 Harry George Chittenden
Jayashree Behera
Rita Tojeiro
+ PDF Chat Exploring the halo-galaxy connection with probabilistic approaches 2024 Natália V. N. Rodrigues
NatalĂ­ S. M. de Santi
L. Raul Abramo
Antonio D. Montero-Dorta
+ PDF Chat A deep learning model for the density profiles of subhaloes in IllustrisTNG 2024 Luisa Lucie-Smith
Giulia Despali
Volker Springel
+ PDF Chat Predicting dark matter halo formation in N-body simulations with deep regression networks 2020 Mauro Bernardini
Lucio Mayer
Darren Reed
Robert Feldmann
+ Not Hydro: Using Neural Networks to estimate galaxy properties on a Dark-Matter-Only simulation 2023 Cristian Hernández Cuevas
Roberto González
Nelson Padilla