On <i>H</i> <sup>2</sup>-solutions for a Camassa-Holm type equation

Type: Article

Publication Date: 2023-01-01

Citations: 5

DOI: https://doi.org/10.1515/math-2022-0577

Abstract

Abstract Camassa-Holm type equations arise as models for the unidirectional propagation of shallow water waves over a flat bottom. They also describe finite length, small amplitude radial deformation waves in cylindrical compressible hyperelastic rods. Under appropriate assumption on the initial data, on the time <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>T</m:mi> </m:math> T , and on the coefficients of such equation, we prove the well-posedness of the classical solutions for the Cauchy problem.

Locations

Similar Works

Action Title Year Authors
+ Well-posedness and peakons for a higher-order<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="mml3" display="inline" overflow="scroll" altimg="si3.gif"><mml:mi>μ</mml:mi></mml:math>-Camassa–Holm equation 2018 Feng Wang
Fengquan Li
Zhijun Qiao
+ PDF Chat On Well-Posedness Results for Camassa-Holm Equation on the Line: A Survey 2004 Luc Molinet
+ PDF Chat Compactly Supported Solutions of the Camassa-Holm Equation 2005 David Henry
+ On the classical solutions for the high order Camassa-Holm type equations 2023 Giuseppe Maria Coclite
Lorenzo di Ruvo
+ Global well-posedness and infinite propagation speed for the <i>N</i> − <i>abc</i> family of Camassa–Holm type equation with both dissipation and dispersion 2020 Zaiyun Zhang
Zhenhai Liu
Youjun Deng
Chuangxia Huang
Shi-you Lin
Zhu Wen
+ Ill-posedness for the Cauchy problem of the Camassa-Holm equation in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msubsup><mml:mrow><mml:mi>B</mml:mi></mml:mrow><mml:mrow><mml:mo>∞</mml:mo><mml:mo>,</mml:mo><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msubsup><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="double-struck">R</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> 2022 Yingying Guo
Weikui Ye
Zhaoyang Yin
+ Local Well-Posedness and Blow-Up Phenomena of Solutions of a &lt;i&gt;n&lt;/i&gt;-Component &lt;math display='inline' xmlns='http://www.w3.org/1998/Math/MathML'&gt; &lt;mi&gt;μ&lt;/mi&gt; &lt;/math&gt; -Camassa-Holm System 2024 亚琴 高
+ Ill-posedness for the Camassa–Holm equation in $$B_{p,1}^{1}\cap C^{0,1}$$ 2024 Jinlu Li
Yanghai Yu
Yingying Guo
Weipeng Zhu
+ PDF Chat Integrability, existence of global solutions, and wave breaking criteria for a generalization of the Camassa–Holm equation 2020 Priscila Leal da Silva
Igor Leite Freire
+ PDF Chat Camassa-Holm equation on shallow water wave equation 2017 L. Bezati Sh. Hajrulla
+ Ill-Posedness for the Cauchy Problem of the Modified Camassa-Holm Equation in $$B_{\infty ,1}^0$$ 2024 He Zhen
Zhaoyang Yin
+ None 2005 A. Alexandrou Himonas
Gerard Misiołek
+ PDF Chat On the Cauchy problem for a higher-order &lt;i&gt;μ&lt;/i&gt;-Camassa-Holm equation 2018 Feng Wang
Fengquan Li
Zhijun Qiao
+ A TWO-DIMENSIONAL VERSION OF THE CAMASSA-HOLM EQUATION 2001 H.‐P. Kruse
Jürgen Scheurle
Wenju Du
+ The local well-posedness and existence of weak solutions for a generalized Camassa–Holm equation 2010 Shaoyong Lai
Yonghong Wu
+ On uniqueness of dissipative solutions of the Camassa-Holm equation 2016 Grzegorz Jamróz
+ $H^{2}$ solutions for a Degasperis–Procesi-type equation 2024 Giuseppe Maria Coclite
Lorenzo di Ruvo
+ On solutions to the Holm–Staley<i>b</i>-family of equations 2010 Yong Zhou
+ Hybrid solitary wave solutions of the Camassa–Holm equation 2022 Hugues Martial Omanda
Clovis Taki Djeumen Tchaho
D. Belobo Belobo
+ PDF Chat Variational derivation of two-component Camassa–Holm shallow water system 2012 Delia Ionescu-Kruse