Capturing dynamical correlations using implicit neural representations

Type: Preprint

Publication Date: 2023-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2304.03949

Locations

  • PubMed Central - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Integration of Machine Learning with Neutron Scattering: Hamiltonian Tuning in Spin Ice with Pressure 2021 Anjana Samarakoon
D. M. Tennant
Feng Ye
Qiang Zhang
S. A. Grigera
+ PDF Chat Uncovering Obscured Phonon Dynamics from Powder Inelastic Neutron Scattering using Machine Learning 2024 Yaokun Su
Chen Li
+ Entangling Solid Solutions: Machine Learning of Tensor Networks for Materials Property Prediction 2022 David E. Sommer
Scott T. Dunham
+ Machine Learning for Magnetic Phase Diagrams and Inverse Scattering Problems 2020 Anjana Samarakoon
D. M. Tennant
+ Machine Learning for Magnetic Phase Diagrams and Inverse Scattering Problems 2020 Anjana Samarakoon
D. M. Tennant
+ Active learning and element embedding approach in neural networks for infinite-layer versus perovskite oxides 2021 Armin Sahinovic
Benjamin Geisler
+ Active learning and element embedding approach in neural networks for infinite-layer versus perovskite oxides 2021 Armin Sahinovic
Benjamin P. Geisler
+ PDF Chat Machine-learning-assisted determination of electronic correlations from magnetic resonance 2023 A. Ananda Rao
Stephen Carr
Charles Snider
D. E. Feldman
Chandrasekhar Ramanathan
V. F. Mitrović
+ PDF Chat Sparse Autoregressive Neural Networks for Classical Spin Systems 2024 Indaco Biazzo
Dian Wu
Giuseppe Carleo
+ PDF Chat Predicting interacting Green's functions with neural networks 2024 E. S. Agapov
Oriol Bertomeu
Alexander Carballo
Christian B. Mendl
Aleksandra Sander
+ PDF Chat Sparse Autoregressive Neural Networks for Classical Spin Systems 2024 Indaco Biazzo
Dian Wu
Giuseppe Carleo
+ Machine learning assisted determination of electronic correlations from magnetic resonance 2022 Anantha Rao
S. H. Carr
Charles Snider
D. E. Feldman
Chandrasekhar Ramanathan
V. F. Mitrović
+ PDF Chat Machine learning for magnetic phase diagrams and inverse scattering problems 2021 Anjana Samarakoon
D. M. Tennant
+ Classification of magnetic order from electronic structure by using machine learning 2023 Yerin Jang
Choong H. Kim
Ara Go
+ PDF Chat Interpretable, calibrated neural networks for analysis and understanding of inelastic neutron scattering data 2021 Keith T. Butler
Manh Duc Le
Jeyan Thiyagalingam
T. G. Perring
+ Reconstruction of the lattice Hamiltonian models from the observations of microscopic degrees of freedom in the presence of competing interactions 2020 Sai Mani Prudhvi Valleti
Lukáš Vlček
Maxim Ziatdinov
Rama K. Vasudevan
Sergei V. Kalinin
+ PDF Chat Deep neural networks for direct, featureless learning through observation: The case of two-dimensional spin models 2018 Kyle Mills
Isaac Tamblyn
+ PDF Chat Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning 2022 Marcel F. Langer
Alex Goeßmann
Matthias Rupp
+ PDF Chat Graph-neural-network predictions of solid-state NMR parameters from spherical tensor decomposition 2024 Chiheb Ben Mahmoud
Louise A. M. Rosset
Jonathan R. Yates
Volker L. Deringer
+ A language-inspired machine learning approach for solving strongly correlated problems with dynamical mean-field theory 2023 Zelong Zhao
Hovan Lee
George H. Booth
Weifeng Ge
Cédric Weber

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (15)

Action Title Year Authors
+ PDF Chat Correlated electrons in high-temperature superconductors 1994 Elbio Dagotto
+ TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems 2016 Martı́n Abadi
Ashish Agarwal
Paul Barham
Eugene Brevdo
Zhifeng Chen
Craig Citro
Gregory S. Corrado
Andy Davis
Jay B. Dean
Matthieu Devin
+ PDF Chat Robust online Hamiltonian learning 2012 Christopher Granade
Christopher Ferrie
Nathan Wiebe
David G. Cory
+ Model-based design evaluation of a compact, high-efficiency neutron scatter camera 2017 Kyle Weinfurther
John Mattingly
E. Brubaker
John T. Steele
+ PDF Chat Linear spin wave theory for single-Q incommensurate magnetic structures 2015 S. Tóth
B. Lake
+ PDF Chat Machine-learning-assisted insight into spin ice Dy2Ti2O7 2020 Anjana Samarakoon
Kipton Barros
Ying Wai Li
Markus Eisenbach
Qiang Zhang
Feng Ye
Vinit Sharma
Zhiling Dun
Haidong Zhou
S. A. Grigera
+ PDF Chat Machine learning on neutron and x-ray scattering and spectroscopies 2021 Zhantao Chen
Nina Andrejevic
Nathan C. Drucker
Thanh Nguyen
R. Patrick Xian
Tess Smidt
Yao Wang
Ralph Ernstorfer
D. M. Tennant
Maria K. Y. Chan
+ PDF Chat Interpretable, calibrated neural networks for analysis and understanding of inelastic neutron scattering data 2021 Keith T. Butler
Manh Duc Le
Jeyan Thiyagalingam
T. G. Perring
+ PDF Chat Chebyshev expansion of spectral functions using restricted Boltzmann machines 2021 Douglas Hendry
Hongwei Chen
Phillip Weinberg
Adrian Feiguin
+ Implicit Neural Representations with Periodic Activation Functions 2020 Vincent Sitzmann
Julien Martel
Alexander W. Bergman
David B. Lindell
Gordon Wetzstein