Quantitative bounds for critically bounded solutions to the Navier-Stokes equations

Type: Other

Publication Date: 2021-01-01

Citations: 23

DOI: https://doi.org/10.1090/pspum/104/01874

Abstract

We revisit the regularity theory of Escauriaza, Seregin, and Šverák for solutions to the three-dimensional Navier-Stokes equations which are uniformly bounded in the critical <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Subscript x Superscript 3 Baseline left-parenthesis double-struck upper R cubed right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mi>x</mml:mi> <mml:mn>3</mml:mn> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">L^3_x(\mathbb {R}^3)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> norm. By replacing all invocations of compactness methods in these arguments with quantitative substitutes, and similarly replacing unique continuation and backwards uniqueness estimates by their corresponding Carleman inequalities, we obtain quantitative bounds for higher regularity norms of these solutions in terms of the critical <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Subscript x Superscript 3"> <mml:semantics> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mi>x</mml:mi> <mml:mn>3</mml:mn> </mml:msubsup> <mml:annotation encoding="application/x-tex">L^3_x</mml:annotation> </mml:semantics> </mml:math> </inline-formula> bound (with a dependence that is triple exponential in nature). In particular, we show that as one approaches a finite blowup time <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T Subscript asterisk"> <mml:semantics> <mml:msub> <mml:mi>T</mml:mi> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msub> <mml:annotation encoding="application/x-tex">T_*</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the critical <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Subscript x Superscript 3"> <mml:semantics> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mi>x</mml:mi> <mml:mn>3</mml:mn> </mml:msubsup> <mml:annotation encoding="application/x-tex">L^3_x</mml:annotation> </mml:semantics> </mml:math> </inline-formula> norm must blow up at a rate <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis log log log StartFraction 1 Over upper T Subscript asterisk Baseline minus t EndFraction right-parenthesis Superscript c"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>log</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mi>log</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mi>log</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mrow> <mml:msub> <mml:mi>T</mml:mi> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msub> <mml:mo>−<!-- − --></mml:mo> <mml:mi>t</mml:mi> </mml:mrow> </mml:mfrac> <mml:msup> <mml:mo stretchy="false">)</mml:mo> <mml:mi>c</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">(\log \log \log \frac {1}{T_*-t})^c</mml:annotation> </mml:semantics> </mml:math> </inline-formula> or faster for an infinite sequence of times approaching <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T Subscript asterisk"> <mml:semantics> <mml:msub> <mml:mi>T</mml:mi> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msub> <mml:annotation encoding="application/x-tex">T_*</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and some absolute constant <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="c greater-than 0"> <mml:semantics> <mml:mrow> <mml:mi>c</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">c&gt;0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of symposia in pure mathematics - View
  • arXiv (Cornell University) - View - PDF
  • Proceedings of symposia in pure mathematics - View
  • arXiv (Cornell University) - View - PDF
  • Proceedings of symposia in pure mathematics - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Quantitative bounds for critically bounded solutions to the Navier-Stokes equations 2019 Terence Tao
+ PDF Chat Improved Quantitative Regularity for the Navier–Stokes Equations in a Scale of Critical Spaces 2021 Stan Palasek
+ PDF Global regularity for solutions of the Navier–Stokes equation sufficiently close to being eigenfunctions of the Laplacian 2021 Evan Miller
+ PDF Quantitative Regularity for the Navier–Stokes Equations Via Spatial Concentration 2021 Tobias Barker
Christophe Prange
+ Regularity aspects of the Navier-Stokes equations in critical spaces 2020 Dallas Albritton
+ From concentration to quantitative regularity: a short survey of recent developments for the Navier-Stokes equations 2022 Tobias Barker
Christophe Prange
+ PDF Chat Quantitative bounds for bounded solutions to the Navier-Stokes equations in endpoint critical Besov spaces 2024 Ruilin Hu
Phuoc‐Tai Nguyen
Quoc‐Hung Nguyen
Ping Zhang
+ A note on weak solutions to the Navier–Stokes equations that are locally in 𝐿_{∞}(𝐿^{3,∞}) 2021 G. Serëgin
+ Quantitative bounds for critically bounded solutions to the three-dimensional Navier-Stokes equations in Lorentz spaces 2022 Feng Wen
He Jiao
Weinan Wang
+ From Concentration to Quantitative Regularity: A Short Survey of Recent Developments for the Navier–Stokes Equations 2023 Tobias Barker
Christophe Prange
+ Remark on a regularity criterion in terms of pressure for the Navier-Stokes equations 2011 Sadek Gala
+ On regularity criteria in terms of pressure for the Navier-Stokes equations in ℝ³ 2005 Yong Zhou
+ PDF Localized Quantitative Estimates and Potential Blow-Up Rates for the Navier–Stokes Equations 2023 Tobias Barker
+ Topics in the regularity theory of the Navier-Stokes equations 2018 Tuan Pham
+ Localized quantitative estimates and potential blow-up rates for the Navier-Stokes equations 2022 Tobias Barker
+ PDF Chat Regularity of Solutions to the Navier–Stokes Equations in $$ {\dot{B}}_{\infty, \infty}^{-1} $$ 2020 G. Serëgin
Daoguo Zhou
+ PDF Chat Quantitative robustness of regularity for 3D Navier–Stokes system in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:msup><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mo>̇</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mi>α</mml:mi></mml:mrow></mml:msup></mml:math>-spaces 2016 Jan Burczak
Wojciech M. Zajączkowski
+ PDF Critical regularity issues for the compressible Navier–Stokes system in bounded domains 2022 Raphaël Danchin
Patrick Tolksdorf
+ PDF Chat New $$\varepsilon $$-Regularity Criteria of Suitable Weak Solutions of the 3D Navier–Stokes Equations at One Scale 2019 Cheng He
Yanqing Wang
Daoguo Zhou
+ Green’s function and pointwise convergence for compressible Navier-Stokes equations 2017 Shijin Deng
Shih‐Hsien Yu