Abstract 5694: Adaptive treatment scheduling of PARP inhibitors in ovarian cancer: Using mathematical modeling to assess clinical feasibility and estimate potential benefits

Type: Article

Publication Date: 2023-04-04

Citations: 0

DOI: https://doi.org/10.1158/1538-7445.am2023-5694

Locations

  • Cancer Research - View

Similar Works

Action Title Year Authors
+ Abstract B009: Integrating mathematical modelling and wet-lab experiments to examine the scope for adaptive treatment scheduling of PARP inhibitors in ovarian cancer 2022 Maximilian Strobl
Mehdi Damaghi
Alexandra Martin
Samantha Byrne
Mark Robertson‐Tessi
Robert A. Gatenby
Robert M. Wenham
Philip K. Maini
Alexander R.A. Anderson
+ A survey of open questions in adaptive therapy: bridging mathematics and clinical translation 2022 Jeffrey West
Fred Adler
Jill Gallaher
Maximilian Strobl
Renee Brady‐Nicholls
Joel S. Brown
Mark Robertson‐Tessi
Eunjung Kim
Robert Noble
Yannick Viossat
+ A survey of open questions in adaptive therapy: Bridging mathematics and clinical translation 2023 Jeffrey West
Fred Adler
Jill Gallaher
Maximilian Strobl
Renee Brady‐Nicholls
Joel S. Brown
Mark Roberson-Tessi
Eunjung Kim
Robert Noble
Yannick Viossat
+ PDF Chat Mathematical Modeling Predicts Response to Chemotherapy and Drug Combinations in Ovarian Cancer 2018 Emilia Kozłowska
Anniina Färkkilä
Tuulia Vallius
Olli Carpén
Jukka Kemppainen
Seija Grénman
Rainer Lehtonen
Johanna Hynninen
Sakari Hietanen
Sampsa Hautaniemi
+ Improving Cancer Treatment via Mathematical Modeling: Surmounting the Challenges Is Worth the Effort 2015 Franziska Michor
Kathryn Beal
+ PDF Chat Computational Modeling of Ovarian Cancer Reveals Optimal Strategies for Therapy and Screening 2019 Shengqing Gu
Stéphanie Lheureux
Azin Sayad
Paulina Cybulska
Liat Hogen
Iryna Vyarvelska
Dongsheng Tu
Wendy R. Parulekar
Matthew Nankivell
Sean Kehoe
+ Optimizing the future: how mathematical models inform treatment schedules for cancer 2022 Deepti Mathur
Ethan S. Barnett
Howard I. Scher
João B. Xavier
+ Data from Mathematical Modeling Predicts Response to Chemotherapy and Drug Combinations in Ovarian Cancer 2023 Emilia Kozłowska
Anniina Färkkilä
Tuulia Vallius
Olli Carpén
Jukka Kemppainen
Seija Grénman
Rainer Lehtonen
Johanna Hynninen
Sakari Hietanen
Sampsa Hautaniemi
+ Data from Mathematical Modeling Predicts Response to Chemotherapy and Drug Combinations in Ovarian Cancer 2023 Emilia Kozłowska
Anniina Färkkilä
Tuulia Vallius
Olli Carpén
Jukka Kemppainen
Seija Grénman
Rainer Lehtonen
Johanna Hynninen
Sakari Hietanen
Sampsa Hautaniemi
+ PDF Chat Computational modeling of ovarian cancer dynamics suggests optimal strategies for therapy and screening 2021 Shengqing Gu
Stéphanie Lheureux
Azin Sayad
Paulina Cybulska
Liat Hogen
Iryna Vyarvelska
Dongsheng Tu
Wendy R. Parulekar
Matthew Nankivell
Sean Kehoe
+ Abstract LB-307: Computational modeling of serous ovarian carcinoma dynamics: Implications for screening and therapy 2015 Shengqing Gu
Liat Hogen
Stéphanie Lheureux
Azin Sayad
Iryna Vyarvelska
Paulina Cybulska
Marcus Q. Bernardini
Barry P. Rosen
Amit M. Oza
Benjamin G. Neel
+ PDF Chat Treatment of evolving cancers will require dynamic decision support 2023 Maximilian Strobl
Jill Gallaher
Mark Robertson‐Tessi
Jeffrey West
Alexander R.A. Anderson
+ Abstract B2-06: Computational modeling of serous ovarian carcinoma dynamics: Implications for screening and therapy 2015 Shengqing Gu
Stéphanie Lheureux
Azin Sayad
Liat Hogen
Iryna Vyarvelska
Paulina Cybulska
Marcus Q. Bernardini
Barry P. Rosen
Amit M. Oza
Benjamin G. Neel
+ Biomathematics in Cancer Research: Looking into How Mathematical Models Are Used to Understand Tumor Growth and the Effectiveness of Different Treatment Strategies 2024 Akinbusola Olushola
Victoria Alao
+ Dosage optimization for reducing tumor burden using a phenotype-structured population model with a drug-resistance continuum 2024 Lifeng Han
Osman N. Yoğurtçu
Marisabel Rodriguez Messan
Wencel Valega-Mackenzie
Ujwani Nukala
Hong Yang
+ Abstract A056: Development and application of an epithelial ovarian cancer-specific line of therapy algorithm using real-world data 2024 Connor Sweetnam
Tirza Areli Calderón Boyle
Sara Burns
Jessica Perhanidis
Matthew J. Rioth
Rayna K. Matsuno
+ PDF Chat Progress and Opportunities to Advance Clinical Cancer Therapeutics Using Tumor Dynamic Models 2019 René Bruno
Dean Bottino
Dinesh P. de Alwis
Antonio Tito Fojo
Jérémie Guedj
Chao Liu
Kristin R. Swanson
Jenny Zheng
Yanan Zheng
Jin Y. Jin
+ Abstract PO-114: Mathematical modeling of tumor heterogeneity to optimize treatment scheduling and delay the evolution of resistance 2020 Deepti Mathur
Bradford P. Taylor
Walid K. Chatila
Nikolaus Schultz
Pedram Razavi
João B. Xavier
+ PDF Chat Corrigendum: Tumor growth dynamic modeling in oncology drug development and regulatory approval: Past, present, and future opportunities 2021
+ PDF Chat A comprehensive review of computational cell cycle models in guiding cancer treatment strategies 2024 Chenhui Ma
Evren Gürkan-Çavusoglu

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors