Dimension estimates on circular (s,t)-Furstenberg sets

Type: Article

Publication Date: 2023-03-27

Citations: 0

DOI: https://doi.org/10.54330/afm.128073

Abstract

In this paper, we show that circular \((s,t)\)-Furstenberg sets in \(\mathbb R^2\) have Hausdorff dimension at least
 
 \(\max\{\tfrac{t}3+s,(2t+1)s-t\}\) for all \(0<s,t\le 1\).
 
 This result extends the previous dimension estimates on circular Kakeya sets by Wolff.

Locations

  • Annales Fennici Mathematici - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Jyväskylä University Digital Archive (University of Jyväskylä) - View - PDF

Similar Works

Action Title Year Authors
+ Dimension Estimates on Circular $(s,t)$-Furstenberg Sets 2022 Jiayin Liu
+ On the Hausdorff dimension of circular Furstenberg sets 2023 Katrin Fässler
Jiayin Liu
Tuomas Orponen
+ Sharp dimension bounds for Furstenberg-type sets 2010 Ursula Molter
Ezequiel Rela
+ PDF Chat An improved bound for the dimension of $(\alpha,2\alpha)$-Furstenberg sets 2021 Kornélia Héra
Pablo Shmerkin
Alexia Yavicoli
+ An improved bound for the dimension of $(\alpha,2\alpha)$-Furstenberg sets 2020 Kornélia Héra
Pablo Shmerkin
Alexia Yavicoli
+ An improved bound for the dimension of $(α,2α)$-Furstenberg sets 2020 Kornélia Héra
Pablo Shmerkin
Alexia Yavicoli
+ On the Hausdorff dimension of Furstenberg sets and orthogonal projections in the plane 2021 Tuomas Orponen
Pablo Shmerkin
+ Small Furstenberg sets 2010 Ursula Molter
Ezequiel Rela
+ PDF Chat On the Hausdorff dimension of Furstenberg sets and orthogonal projections in the plane 2023 Tuomas Orponen
Pablo Shmerkin
+ Hausdorff dimension of Furstenberg-type sets associated to families of affine subspaces 2018 Kornélia Héra
+ Hausdorff dimension of Furstenberg-type sets associated to families of affine subspaces 2018 Kornélia Héra
+ Small Furstenberg sets 2012 Ursula Molter
Ezequiel Rela
+ On the packing dimension of Furstenberg sets 2020 Pablo Shmerkin
+ Furstenberg sets for a fractal set of directions 2010 Ursula Molter
Ezequiel Rela
+ Furstenberg sets for a fractal set of directions 2010 Ursula Molter
Ezequiel Rela
+ PDF Chat A Helly-type theorem for the dimension of the kernel of a starshaped set 1979 Marilyn Breen
+ PDF Chat Furstenberg sets for a fractal set of directions 2011 Ursula Molter
Ezequiel Rela
+ PDF Chat Hausdorff dimension of unions of affine subspaces and of Furstenberg-type sets 2019 Kornélia Héra
Tamás Keleti
András Máthé
+ The dimension of the kernel in planar sets which are starshaped via $\alpha $ -paths 1998 Marilyn Breen
+ On the Fourier dimension of $(d,k)$-sets and Kakeya sets with restricted directions 2021 Jonathan M. Fraser
Terence L. J. Harris
Nicholas G. Kroon

Works That Cite This (0)

Action Title Year Authors