A note on affine cones over Grassmannians and their stringy 𝐸-functions

Type: Article

Publication Date: 2023-03-17

Citations: 0

DOI: https://doi.org/10.1090/proc/16378

Abstract

We compute the stringy <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-function of the affine cone over a Grassmannian. If the Grassmannian is not a projective space then its cone does not admit a crepant resolution. Nonetheless the stringy <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-function is sometimes a polynomial and in those cases the cone admits a noncommutative crepant resolution. This raises the question as to whether the existence of a noncommutative crepant resolution implies that the stringy <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-function is a polynomial.

Locations

  • Proceedings of the American Mathematical Society - View
  • arXiv (Cornell University) - View - PDF
  • VUBIR (Vrije Universiteit Brussel) - View - PDF

Similar Works

Action Title Year Authors
+ A note on affine cones over Grassmannians and their stringy $E$-functions 2022 Timothy De Deyn
+ A note on values of noncommutative polynomials 2010 Matej Brešar
Igor Klep
+ The class of the affine line is a zero divisor in the Grothendieck ring: Via 𝐺₂-Grassmannians 2018 Atsushi Ito
Makoto Miura
Shinnosuke Okawa
Kazushi Ueda
+ PDF Chat Representations of 𝑆𝑂(𝑘,𝐶) on harmonic polynomials on a null cone 1991 Olivier Debarre
Tuong Ton-That
+ PDF Chat Cocenters and representations of pro-𝑝 Hecke algebras 2017 Xuhua He
Sian Nie
+ PDF Chat 𝐾-theory of cones of smooth varieties 2011 Guillermo Cortiñas⋆
Christian Haesemeyer
M. Walker
Charles A. Weibel
+ Noncommutative crepant resolutions, an overview 2023 Michel Van den Bergh
+ Regular Functions on the 𝐾-nilpotent cone 2022 Lucas Mason-Brown
+ A note on sheaves without self-extensions on the projective 𝑛-space 2013 Dieter Happel
Dan Zacharia
+ Quasi-convex free polynomials 2014 Sriram Balasubramanian
Scott McCullough
+ PDF Chat Equivariant coherent sheaves on the exotic nilpotent cone 2013 Vinoth Nandakumar
+ Quiver varieties and finite dimensional representations of quantum affine algebras 2000 Hiraku Nakajima
+ PDF Chat Polynomials on affine manifolds 1982 David Fried
+ PDF Chat Realisation of Lusztig cones 2004 Philippe Caldero
Bethany Marsh
Sophie Morier-Genoud
+ Isomorphism problems of noncommutative deformations of type 𝐷 Kleinian singularities 2008 Paul Lévy
+ PDF Chat Differential operators, 𝑛-branch curve singularities and the 𝑛-subspace problem 1995 R. C. Cannings
Martin P. Holland
+ Pieces of nilpotent cones for classical groups 2011 Pramod N. Achar
Anthony Henderson
Eric Sommers
+ PDF Chat Noncommutative algebras of dimension three over integral schemes 1985 Rick Miranda
Mina Teicher
+ Characters of equivariant 𝒟-modules on Veronese cones 2016 Claudiu Raicu
+ Projective rational smoothness of varieties of representations for quivers of type 𝐴 2003 Ralf Schiffler

Works That Cite This (0)

Action Title Year Authors