Type: Article
Publication Date: 2023-03-17
Citations: 0
DOI: https://doi.org/10.1090/proc/16378
We compute the stringy <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-function of the affine cone over a Grassmannian. If the Grassmannian is not a projective space then its cone does not admit a crepant resolution. Nonetheless the stringy <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-function is sometimes a polynomial and in those cases the cone admits a noncommutative crepant resolution. This raises the question as to whether the existence of a noncommutative crepant resolution implies that the stringy <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-function is a polynomial.
Action | Title | Year | Authors |
---|