On the global well-posedness of the Calogero-Sutherland derivative nonlinear Schrödinger equation

Type: Preprint

Publication Date: 2023-01-01

Citations: 2

DOI: https://doi.org/10.48550/arxiv.2303.01087

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ On the global well-posedness of the Calogero–Sutherland derivative nonlinear Schrödinger equation 2024 Rana Badreddine
+ PDF Chat On the nonlinear Schrödinger equation in spaces of infinite mass and low regularity 2022 Vanessa Barros
Simão Correia
Filipe Oliveira
+ On the nonlinear Schrödinger equation in spaces of infinite mass and low regularity 2020 Vanessa Andrade de Barros
Simão Correia
Filipe Oliveira
+ Traveling waves & finite gap potentials for the Calogero-Sutherland Derivative nonlinear Schrödinger equation 2023 Rana Badreddine
+ The Calogero--Moser Derivative Nonlinear Schrödinger Equation 2022 Patrick D. Gerard
Enno Lenzmann
+ Global well-posedness and scattering for the defocusing $\dot{H}^{\frac{1}{2}}$-critical nonlinear Schrödinger equation in $\mathbb{R}^2$ 2018 Xueying Yu
+ Global well-posedness for the nonlinear Schrödinger equation with derivative in energy space 2013 Yifei Wu
+ PDF Chat Global well-posedness for the defocusing 3D quadratic NLS in the sharp critical space 2024 Jia Shen
Yifei Wu
+ Large global solutions for energy-critical nonlinear Schrödinger equation 2021 Ruobing Bai
Jia Shen
Yifei Wu
+ Global well-posedness for the derivative nonlinear Schrödinger equation 2020 Hajer Bahouri
Galina Perelman
+ PDF Chat Filtering the <inline-formula><tex-math id="M1">\begin{document}$ L^2- $\end{document}</tex-math></inline-formula>critical focusing Schrödinger equation 2020 Ruoci Sun
+ PDF Chat Global well-posedness and scattering for the defocusing Ḣ1∕2-critical nonlinear Schrödinger equation in ℝ2 2021 Xueying Yu
+ Global well-posedness for the derivative nonlinear Schrödinger equation 2022 Hajer Bahouri
Galina Perelman
+ On the Cauchy problem for a derivative nonlinear Schrödinger equation with nonvanishing boundary conditions 2021 Phan van Tin
+ Global well-posedness for the derivative nonlinear Schrödinger equation in $L^2(\mathbb{R})$ 2022 Benjamin Harrop‐Griffiths
Rowan Killip
Maria Ntekoume
Monica Vişan
+ Global well-posedness for the derivative nonlinear Schr\"{o}dinger equation in $H^{\frac 12} (\mathbb{R})$ 2016 Zihua Guo
Yifei Wu
+ Global well-posedness for Schrödinger equations with derivative 2001 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terry Tao
+ Global well-posedness, scattering, and blowup for nonlinear coupled Schrödinger equations in ℝ<sup>3</sup> 2015 Yushun Xu
+ Global well-posedness and scattering of the four dimensional cubic focusing nonlinear Schrödinger system 2024 Yonghang Chang
Menglan Liao
+ PDF Chat Global well-posedness on the derivative nonlinear Schrödinger equation 2015 Yifei Wu