Fairness Evaluation in Text Classification: Machine Learning Practitioner Perspectives of Individual and Group Fairness

Type: Preprint

Publication Date: 2023-04-19

Citations: 9

DOI: https://doi.org/10.1145/3544548.3581227

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Measuring Fairness of Text Classifiers via Prediction Sensitivity 2022 Satyapriya Krishna
Rahul Gupta
Apurv Verma
Jwala Dhamala
Yada Pruksachatkun
Kai-Wei Chang
+ PDF Chat Analyzing Fairness of Classification Machine Learning Model with Structured Dataset 2024 Ahmed Nabih Zaki Rashed
Abdelkrim Kallich
Mohamed A. El-Tayeb
+ Counterfactual Fairness in Text Classification through Robustness 2018 Sahaj Garg
Vinçent Pérot
Nicole Limtiaco
Ankur Taly
Ed H.
Alex Beutel
+ Counterfactual Fairness in Text Classification through Robustness 2019 Sahaj Garg
Vincent Perot
Nicole Limtiaco
Ankur Taly
Ed H.
Alex Beutel
+ Fairness in Machine Learning: A Survey 2020 Simon Caton
Christian Haas
+ Counterfactual Fairness in Text Classification through Robustness 2018 Sahaj Garg
Vincent Perot
Nicole Limtiaco
Ankur Taly
Ed H.
Alex Beutel
+ PDF Chat Perceived Fairness of the Machine Learning Development Process: Concept Scale Development 2025 Anoop Kumar Mishra
Deepak Khazanchi
+ PDF Chat Fairness in Machine Learning: A Survey 2023 Simon Caton
Christian Haas
+ PDF Chat A Review of Fairness and A Practical Guide to Selecting Context-Appropriate Fairness Metrics in Machine Learning 2024 C. Barr
Olivia Johanna Erdélyi
Paul D. Docherty
Randolph C. Grace
+ Assessing Perceived Fairness from Machine Learning Developer's Perspective 2023 Anoop Kumar Mishra
Deepak Khazanchi
+ PDF Chat Improving Fairness in Machine Learning Systems 2019 Kenneth Holstein
Jennifer Wortman Vaughan
Hal Daumé
Miro DudĂ­k
Hanna Wallach
+ PDF Chat A Catalog of Fairness-Aware Practices in Machine Learning Engineering 2024 Gianmario Voria
Giulia Sellitto
Carmine Ferrara
Francesco Abate
Andrea De Lucia
Filomena Ferrucci
Gemma Catolino
Fabio Palomba
+ Metrics and methods for a systematic comparison of fairness-aware machine learning algorithms. 2020 Gareth Jones
James M. Hickey
Pietro G. Di Stefano
Charanpal Dhanjal
Laura C. Stoddart
Vlasios Vasileiou
+ Metrics and methods for a systematic comparison of fairness-aware machine learning algorithms 2020 Gareth Jones
James M. Hickey
Pietro G. Di Stefano
Charanpal Dhanjal
Laura C. Stoddart
V. Vasileiou
+ PDF Chat Improving Fairness in Machine Learning Systems: What Do Industry Practitioners Need? 2019 Kenneth Holstein
Jennifer Wortman Vaughan
Hal Daumé
Miro DudĂ­k
Hanna Wallach
+ Do the machine learning models on a crowd sourced platform exhibit bias? an empirical study on model fairness 2020 Sumon Biswas
Hridesh Rajan
+ Measuring Non-Expert Comprehension of Machine Learning Fairness Metrics. 2019 Debjani Saha
Candice Schumann
Duncan C. McElfresh
John P. Dickerson
Michelle L. Mazurek
Michael Carl Tschantz
+ PDF Chat Analyzing Fairness of Computer Vision and Natural Language Processing Models 2024 Ahmed Nabih Zaki Rashed
Abdelkrim Kallich
Mohamed M. Eltayeb
+ Putting Fairness Principles into Practice: Challenges, Metrics, and Improvements 2019 Alex Beutel
Jilin Chen
Tulsee Doshi
Hai Qian
Allison Woodruff
Christine Luu
Pierre Kreitmann
Jonathan Bischof
Ed H.
+ PDF Chat Through the Data Management Lens: Experimental Analysis and Evaluation of Fair Classification 2022 Maliha Tashfia Islam
Anna Fariha
Alexandra Meliou
Babak Salimi