The Value-Improvement Path: Towards Better Representations for Reinforcement Learning

Type: Preprint

Publication Date: 2020-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2006.02243

View

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat The Value-Improvement Path: Towards Better Representations for Reinforcement Learning 2021 Will Dabney
André Barreto
Mark Rowland
Robert Dadashi
John Quan
Marc G. Bellemare
David Silver
+ The Value-Improvement Path: Towards Better Representations for Reinforcement Learning. 2020 Will Dabney
André Barreto
Mark Rowland
Robert Dadashi
John Quan
Marc G. Bellemare
David Silver
+ Value-driven Hindsight Modelling 2020 Arthur Guez
Fabio Viola
Théophane Weber
Lars Buesing
Steven Kapturowski
Doina Precup
David Silver
Nicolas Heess
+ Value Prediction Network 2017 Junhyuk Oh
Satinder Singh
Honglak Lee
+ Value Prediction Network 2017 Junhyuk Oh
Satinder Singh
Honglak Lee
+ Value Prediction Network 2017 Junhyuk Oh
Satinder Singh
Honglak Lee
+ Represent Your Own Policies: Reinforcement Learning with Policy-extended Value Function Approximator 2020 Hongyao Tang
Zhaopeng Meng
Jianye Hao
Chen Chen
Daniel Graves
Dong Li
Hangyu Mao
Wulong Liu
Yaodong Yang
Changmin Yu
+ The Value Equivalence Principle for Model-Based Reinforcement Learning 2020 Christopher Grimm
André Barreto
Satinder Singh
David Silver
+ The Value Equivalence Principle for Model-Based Reinforcement Learning 2020 Christopher Grimm
André Sales Barreto
Satinder Singh
David Silver
+ Hybrid Reward Architecture for Reinforcement Learning 2017 Harm van Seijen
Mehdi Fatemi
Joshua Romoff
Romain Laroche
Tavian Barnes
Jeffrey Tsang
+ Hybrid reward architecture for reinforcement learning 2017 Harm van Seijen
Mehdi Fatemi
Joshua Romoff
Romain Laroche
Tavian Barnes
Jeffrey Tsang
+ A Geometric Perspective on Optimal Representations for Reinforcement Learning 2019 Marc G. Bellemare
Will Dabney
Robert Dadashi
Adrien Ali Taïga
Pablo Samuel Castro
Nicolas Le Roux
Dale Schuurmans
Tor Lattimore
Clare Lyle
+ Accelerating Reinforcement Learning with Value-Conditional State Entropy Exploration 2023 Dongyoung Kim
Jinwoo Shin
Pieter Abbeel
Younggyo Seo
+ Proto-Value Networks: Scaling Representation Learning with Auxiliary Tasks 2023 Jesse Farebrother
Joshua Greaves
Rishabh Agarwal
Charline Le Lan
Ross Goroshin
Pablo Samuel Castro
Marc G. Bellemare
+ What About Inputing Policy in Value Function: Policy Representation and Policy-extended Value Function Approximator 2020 Hongyao Tang
Zhaopeng Meng
Jianye Hao
Chen Chen
Daniel Graves
Dong Li
Changmin Yu
Hangyu Mao
Wulong Liu
Yaodong Yang
+ Decoupling Value and Policy for Generalization in Reinforcement Learning 2021 Roberta Raileanu
Rob Fergus
+ Deep Episodic Value Iteration for Model-based Meta-Reinforcement Learning 2017 Steven Hansen
+ A Generalized Bootstrap Target for Value-Learning, Efficiently Combining Value and Feature Predictions 2022 Anthony GX-Chen
Veronica Chelu
Blake Richards
Joëlle Pineau
+ On the Importance of Exploration for Generalization in Reinforcement Learning 2023 Yiding Jiang
J. Zico Kolter
Roberta Raileanu
+ Reward Prediction Error as an Exploration Objective in Deep RL 2020 Riley Simmons-Edler
Ben Eisner
Daniel Yang
Anthony Bisulco
Eric Mitchell
Sebastian Seung
Daniel Lee

Cited by (0)

Action Title Year Authors

Citing (0)

Action Title Year Authors