Deep neural operators can serve as accurate surrogates for shape optimization: A case study for airfoils

Type: Preprint

Publication Date: 2023-01-01

Citations: 2

DOI: https://doi.org/10.48550/arxiv.2302.00807

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ INFINITY: Neural Field Modeling for Reynolds-Averaged Navier-Stokes Equations 2023 Louis Serrano
LĂ©on Migus
Yuan Yin
Jocelyn Ahmed Mazari
Patrick Gallinari
+ PDF Chat Solving all laminar flows around airfoils all-at-once using a parametric neural network solver 2025 Wenbo Cao
Shixiang Tang
Qi Ma
Wanli Ouyang
Weiwei Zhang
+ Enhanced data efficiency using deep neural networks and Gaussian processes for aerodynamic design optimization 2020 S. Ashwin Renganathan
Romit Maulik and
Jai Ahuja
+ Enhanced data efficiency using deep neural networks and Gaussian processes for aerodynamic design optimization 2020 S. Ashwin Renganathan
Romit Maulik and
Jai Ahuja
+ A parametric level set method with convolutional encoder-decoder network for shape optimization with fluid flow 2023 Wrik Mallik
Rajeev K. Jaiman
Jasmin Jelovica
+ PDF Chat A Parametric Level Set Method with Convolutional Encoder-Decoder Network for Shape Optimization with Fluid Flow 2023 Wrik Mallik
Rajeev K. Jaiman
Jasmin Jelovica
+ Machine-Learning for Nonintrusive Model Order Reduction of the Parametric Inviscid Transonic Flow past an airfoil 2019 S. Ashwin Renganathan
Romit Maulik
Vishwas Rao
+ Geometry-Informed Neural Operator for Large-Scale 3D PDEs 2023 Zongyi Li
Nikola B. Kovachki
Chris Choy
Boyi Li
Jean Kossaifi
Shourya Prakash Otta
Mohammad Amin Nabian
Maximilian Stadler
Christian Hundt
Kamyar Azizzadenesheli
+ Learning High-Dimensional Parametric Maps via Reduced Basis Adaptive Residual Networks 2021 Thomas O’Leary-Roseberry
Xiaosong Du
Anirban Chaudhuri
Joaquim R. R. A. Martins
Karen Willcox
Omar Ghattas
+ PDF Chat Machine learning for nonintrusive model order reduction of the parametric inviscid transonic flow past an airfoil 2020 S. Ashwin Renganathan
Romit Maulik
Vishwas Rao
+ PDF Chat Implicit Neural Representation For Accurate CFD Flow Field Prediction 2024 Laurent de Vito
Nils Pinnau
Simone Dey
+ PDF Chat FlowBench: A Large Scale Benchmark for Flow Simulation over Complex Geometries 2024 Ronak Tali
Ali Rabeh
Cheng-Hau Yang
Mehdi Shadkhah
Sita Karki
Ajay Upadhyaya
Suriya Dhakshinamoorthy
Mohammad Saadati
Soumik Sarkar
Adarsh Krishnamurthy
+ PDF Chat Aero-Nef: Neural Fields for Rapid Aircraft Aerodynamics Simulations 2024 G. Catalani
Siddhant Agarwal
Xavier Bertrand
Frédéric Tost
Michaël Bauerheim
Joseph Morlier
+ A complete state-space solution model for inviscid flow around airfoils based on physics-informed neural networks 2024 Wenbo Cao
Jiahao Song
Weiwei Zhang
+ Deep convolutional neural network for shape optimization using level-set approach 2022 Wrik Mallik
Neil Farvolden
Jasmin Jelovica
Rajeev K. Jaiman
+ Aeroacoustic airfoil shape optimization enhanced by autoencoders 2022 Jiaqing Kou
Laura Botero-BolĂ­var
Román Ballano
Oscar Mariño
Leandro D. de Santana
Eusebio Valero
Esteban Ferrer
+ PDF Chat Aeroacoustic Airfoil Shape Optimization Enhanced by Autoencoders 2022 Jiaqing Kou
Laura Botero-BolĂ­var
Roman Ballano
Oscar Mariño
Leandro D. de Santana
Eusebio Valero
Esteban Ferrer
+ PDF Chat Physics-Informed Neural Networks for Transonic Flows around an Airfoil 2024 Simon Wassing
Stefan Langer
Philipp Bekemeyer
+ PDF Chat Deep Learning Methods for Reynolds-Averaged Navier–Stokes Simulations of Airfoil Flows 2019 Nils Thuerey
Konstantin WeiĂźenow
Lukas Prantl
Xiangyu Hu
+ PDF Chat DoMINO: A Decomposable Multi-scale Iterative Neural Operator for Modeling Large Scale Engineering Simulations 2025 Rishikesh Ranade
Mohammad Amin Nabian
Kaustubh Tangsali
A. Kamenev
Oliver Hennigh
Ram Cherukuri
Sanjay Choudhry

Works Cited by This (0)

Action Title Year Authors