Type: Paratext
Publication Date: 2023-02-08
Citations: 0
DOI: https://doi.org/10.1090/bproc/2023-10-02
We show that for certain non-CM elliptic curves $E_{/\mathbb {Q}}$ such that $3$ is an Eisenstein prime of good reduction, a positive proportion of the quadratic twists $E_{\psi }$ of $E$ have MordellâWeil rank one and the $3$-adic height pairing on $E_{\psi }(\mathbb {Q})$ is non-degenerate. We also show similar but weaker results for other Eisenstein primes. The method of proof also yields examples of middle codimensional algebraic cycles over number fields of arbitrarily large dimension (generalized Heegner cycles) that have non-zero $p$-adic height. It is not known â though expected â that the archimedian height of these higher-codimensional cycles is non-zero.
Action | Title | Year | Authors |
---|---|---|---|
+ PDF Chat | None | 2022 | |
+ PDF Chat | None | 2023 | |
+ | None | 2004 |
William Stein Mark E. Watkins |
+ PDF Chat | None | 2023 |
David Zywina |
+ | None | 1999 |
Chantal David Francesco Pappalardi |
+ | None | 2004 |
Haruzo Hida |
+ PDF Chat | None | 2001 |
Siman Wong |
+ PDF Chat | None | 2023 |
Masaki Kameko |
+ | None | 2003 |
Matthew Baker |
+ PDF Chat | None | 1997 |
Ken Ono |
+ | None | 1993 |
B. Wang Bernard Harris |
+ PDF Chat | None | 1998 |
Karsten Buecker |
+ | None | 2004 |
Charles Gadéa |
+ PDF Chat | None | 2002 |
Philippe Michel Jeffrey M. VanderKam Philippe Michel |
+ | None | 2003 |
Song Wang |
+ PDF Chat | None | 2000 |
David Ginzburg Stephen Rallis |
+ PDF Chat | None | 2002 |
Kristin Lauter Jean-Pierre Serre |
+ PDF Chat | None | 2021 |
Nicholas Triantafillou |
+ | Elliptic curves and their Frobenius fields | 2014 |
Manisha Kulkarni Vijay M. Patankar C. S. Rajan |
+ PDF Chat | None | 1999 |
Nils Bruin |
Action | Title | Year | Authors |
---|
Action | Title | Year | Authors |
---|---|---|---|
+ | FINITENESS OF $ E(\mathbf{Q})$ AND $ \textrm{Ø}(E,\mathbf{Q})$ FOR A SUBCLASS OF WEIL CURVES | 1989 |
V. A. Kolyvagin |