Type: Article
Publication Date: 2023-01-29
Citations: 2
DOI: https://doi.org/10.1515/forum-2020-0359
Abstract The purpose of this paper is to obtain asymptotics of shifted sums of Hecke eigenvalue squares on average. We show that for <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:msup> <m:mi>X</m:mi> <m:mrow> <m:mfrac> <m:mn>2</m:mn> <m:mn>3</m:mn> </m:mfrac> <m:mo>+</m:mo> <m:mi>ϵ</m:mi> </m:mrow> </m:msup> <m:mo><</m:mo> <m:mi>H</m:mi> <m:mo><</m:mo> <m:msup> <m:mi>X</m:mi> <m:mrow> <m:mn>1</m:mn> <m:mo>-</m:mo> <m:mi>ϵ</m:mi> </m:mrow> </m:msup> </m:mrow> </m:math> {X^{\frac{2}{3}+\epsilon}<H<X^{1-\epsilon}} there are constants <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mi>B</m:mi> <m:mi>h</m:mi> </m:msub> </m:math> {B_{h}} such that <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mrow> <m:mrow> <m:munder> <m:mo largeop="true" movablelimits="false" symmetric="true">∑</m:mo> <m:mrow> <m:mi>X</m:mi> <m:mo>≤</m:mo> <m:mi>n</m:mi> <m:mo>≤</m:mo> <m:mrow> <m:mn>2</m:mn> <m:mo></m:mo> <m:mi>X</m:mi> </m:mrow> </m:mrow> </m:munder> <m:mrow> <m:msub> <m:mi>λ</m:mi> <m:mi>f</m:mi> </m:msub> <m:mo></m:mo> <m:msup> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mi>n</m:mi> <m:mo stretchy="false">)</m:mo> </m:mrow> <m:mn>2</m:mn> </m:msup> <m:mo></m:mo> <m:msub> <m:mi>λ</m:mi> <m:mi>f</m:mi> </m:msub> <m:mo></m:mo> <m:msup> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mrow> <m:mi>n</m:mi> <m:mo>+</m:mo> <m:mi>h</m:mi> </m:mrow> <m:mo stretchy="false">)</m:mo> </m:mrow> <m:mn>2</m:mn> </m:msup> </m:mrow> </m:mrow> <m:mo>-</m:mo> <m:mrow> <m:msub> <m:mi>B</m:mi> <m:mi>h</m:mi> </m:msub> <m:mo></m:mo> <m:mi>X</m:mi> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:msub> <m:mi>O</m:mi> <m:mrow> <m:mi>f</m:mi> <m:mo>,</m:mo> <m:mi>A</m:mi> <m:mo>,</m:mo> <m:mi>ϵ</m:mi> </m:mrow> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mrow> <m:mi>X</m:mi> <m:mo></m:mo> <m:msup> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mrow> <m:mi>log</m:mi> <m:mo></m:mo> <m:mi>X</m:mi> </m:mrow> <m:mo stretchy="false">)</m:mo> </m:mrow> <m:mrow> <m:mo>-</m:mo> <m:mi>A</m:mi> </m:mrow> </m:msup> </m:mrow> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> \sum_{X\leq n\leq 2X}\lambda_{f}(n)^{2}\lambda_{f}(n+h)^{2}-B_{h}X=O_{f,A,% \epsilon}(X(\log X)^{-A}) for all but <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:msub> <m:mi>O</m:mi> <m:mrow> <m:mi>f</m:mi> <m:mo>,</m:mo> <m:mi>A</m:mi> <m:mo>,</m:mo> <m:mi>ϵ</m:mi> </m:mrow> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mrow> <m:mi>H</m:mi> <m:mo></m:mo> <m:msup> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mrow> <m:mi>log</m:mi> <m:mo></m:mo> <m:mi>X</m:mi> </m:mrow> <m:mo stretchy="false">)</m:mo> </m:mrow> <m:mrow> <m:mo>-</m:mo> <m:mrow> <m:mn>3</m:mn> <m:mo></m:mo> <m:mi>A</m:mi> </m:mrow> </m:mrow> </m:msup> </m:mrow> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:mrow> </m:math> {O_{f,A,\epsilon}(H(\log X)^{-3A})} integers <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mi>h</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo stretchy="false">[</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>H</m:mi> <m:mo stretchy="false">]</m:mo> </m:mrow> </m:mrow> </m:math> {h\in[1,H]} where <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mrow> <m:mo stretchy="false">{</m:mo> <m:mrow> <m:msub> <m:mi>λ</m:mi> <m:mi>f</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mi>n</m:mi> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy="false">}</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msub> </m:math> {\{\lambda_{f}(n)\}_{n\geq 1}} are normalized Hecke eigenvalues of a fixed holomorphic cusp form f . Our method is based on the Hardy–Littlewood circle method. We divide the minor arcs into two parts <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mi>m</m:mi> <m:mn>1</m:mn> </m:msub> </m:math> {m_{1}} and <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mi>m</m:mi> <m:mn>2</m:mn> </m:msub> </m:math> {m_{2}} . In order to treat <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mi>m</m:mi> <m:mn>2</m:mn> </m:msub> </m:math> {m_{2}} , we use the Hecke relations, a bound of Miller to apply some arguments from a paper of Matomäki, Radziwiłł and Tao. In order to treat <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mi>m</m:mi> <m:mn>1</m:mn> </m:msub> </m:math> {m_{1}} , we apply Parseval’s identity and Gallagher’s lemma.
Action | Title | Year | Authors |
---|---|---|---|
+ PDF Chat | On the Rankin-Selberg problem in families | 2023 |
Jiseong Kim |
+ PDF Chat | Ergodic averages with the Hecke eigenvalue square weights and the Piltz divisor function weights | 2023 |
Jiseong Kim |