On the asymptotics of the shifted sums of Hecke eigenvalue squares

Type: Article

Publication Date: 2023-01-29

Citations: 2

DOI: https://doi.org/10.1515/forum-2020-0359

Abstract

Abstract The purpose of this paper is to obtain asymptotics of shifted sums of Hecke eigenvalue squares on average. We show that for <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:msup> <m:mi>X</m:mi> <m:mrow> <m:mfrac> <m:mn>2</m:mn> <m:mn>3</m:mn> </m:mfrac> <m:mo>+</m:mo> <m:mi>ϵ</m:mi> </m:mrow> </m:msup> <m:mo>&lt;</m:mo> <m:mi>H</m:mi> <m:mo>&lt;</m:mo> <m:msup> <m:mi>X</m:mi> <m:mrow> <m:mn>1</m:mn> <m:mo>-</m:mo> <m:mi>ϵ</m:mi> </m:mrow> </m:msup> </m:mrow> </m:math> {X^{\frac{2}{3}+\epsilon}&lt;H&lt;X^{1-\epsilon}} there are constants <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mi>B</m:mi> <m:mi>h</m:mi> </m:msub> </m:math> {B_{h}} such that <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mrow> <m:mrow> <m:munder> <m:mo largeop="true" movablelimits="false" symmetric="true">∑</m:mo> <m:mrow> <m:mi>X</m:mi> <m:mo>≤</m:mo> <m:mi>n</m:mi> <m:mo>≤</m:mo> <m:mrow> <m:mn>2</m:mn> <m:mo>⁢</m:mo> <m:mi>X</m:mi> </m:mrow> </m:mrow> </m:munder> <m:mrow> <m:msub> <m:mi>λ</m:mi> <m:mi>f</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:msup> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mi>n</m:mi> <m:mo stretchy="false">)</m:mo> </m:mrow> <m:mn>2</m:mn> </m:msup> <m:mo>⁢</m:mo> <m:msub> <m:mi>λ</m:mi> <m:mi>f</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:msup> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mrow> <m:mi>n</m:mi> <m:mo>+</m:mo> <m:mi>h</m:mi> </m:mrow> <m:mo stretchy="false">)</m:mo> </m:mrow> <m:mn>2</m:mn> </m:msup> </m:mrow> </m:mrow> <m:mo>-</m:mo> <m:mrow> <m:msub> <m:mi>B</m:mi> <m:mi>h</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mi>X</m:mi> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:msub> <m:mi>O</m:mi> <m:mrow> <m:mi>f</m:mi> <m:mo>,</m:mo> <m:mi>A</m:mi> <m:mo>,</m:mo> <m:mi>ϵ</m:mi> </m:mrow> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mrow> <m:mi>X</m:mi> <m:mo>⁢</m:mo> <m:msup> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mrow> <m:mi>log</m:mi> <m:mo>⁡</m:mo> <m:mi>X</m:mi> </m:mrow> <m:mo stretchy="false">)</m:mo> </m:mrow> <m:mrow> <m:mo>-</m:mo> <m:mi>A</m:mi> </m:mrow> </m:msup> </m:mrow> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> \sum_{X\leq n\leq 2X}\lambda_{f}(n)^{2}\lambda_{f}(n+h)^{2}-B_{h}X=O_{f,A,% \epsilon}(X(\log X)^{-A}) for all but <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:msub> <m:mi>O</m:mi> <m:mrow> <m:mi>f</m:mi> <m:mo>,</m:mo> <m:mi>A</m:mi> <m:mo>,</m:mo> <m:mi>ϵ</m:mi> </m:mrow> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mrow> <m:mi>H</m:mi> <m:mo>⁢</m:mo> <m:msup> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mrow> <m:mi>log</m:mi> <m:mo>⁡</m:mo> <m:mi>X</m:mi> </m:mrow> <m:mo stretchy="false">)</m:mo> </m:mrow> <m:mrow> <m:mo>-</m:mo> <m:mrow> <m:mn>3</m:mn> <m:mo>⁢</m:mo> <m:mi>A</m:mi> </m:mrow> </m:mrow> </m:msup> </m:mrow> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:mrow> </m:math> {O_{f,A,\epsilon}(H(\log X)^{-3A})} integers <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mi>h</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo stretchy="false">[</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>H</m:mi> <m:mo stretchy="false">]</m:mo> </m:mrow> </m:mrow> </m:math> {h\in[1,H]} where <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mrow> <m:mo stretchy="false">{</m:mo> <m:mrow> <m:msub> <m:mi>λ</m:mi> <m:mi>f</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mi>n</m:mi> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy="false">}</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msub> </m:math> {\{\lambda_{f}(n)\}_{n\geq 1}} are normalized Hecke eigenvalues of a fixed holomorphic cusp form f . Our method is based on the Hardy–Littlewood circle method. We divide the minor arcs into two parts <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mi>m</m:mi> <m:mn>1</m:mn> </m:msub> </m:math> {m_{1}} and <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mi>m</m:mi> <m:mn>2</m:mn> </m:msub> </m:math> {m_{2}} . In order to treat <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mi>m</m:mi> <m:mn>2</m:mn> </m:msub> </m:math> {m_{2}} , we use the Hecke relations, a bound of Miller to apply some arguments from a paper of Matomäki, Radziwiłł and Tao. In order to treat <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mi>m</m:mi> <m:mn>1</m:mn> </m:msub> </m:math> {m_{1}} , we apply Parseval’s identity and Gallagher’s lemma.

Locations

  • arXiv (Cornell University) - View - PDF
  • Forum Mathematicum - View

Similar Works

Action Title Year Authors
+ On the asymptotics of the shifted sums of Hecke eigenvalue squares 2020 Jiseong Kim
+ PDF Chat Bounds on shifted convolution sums for Hecke eigenforms 2022 Asbjørn Christian Nordentoft
Yiannis N. Petridis
Morten S. Risager
+ Shifted convolution sums for higher rank groups 2018 Yujiao Jiang
Guangshi Lü
+ On the Values of Kloosterman Sums 2009 Igor E. Shparlinski
+ Shifted convolution sums related to Hecke–Maass forms 2020 Hengcai Tang
Jie Wu
+ On the average size of the eigenvalues of the Hecke operators 2025 William Cason
Akash Jim
Charlie Medlock
Erick Ross
Hui Xue
+ Bounds on shifted convolution sums for Hecke eigenforms 2021 Asbjørn Christian Nordentoft
Yiannis N. Petridis
Morten S. Risager
+ On numbers of the form <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>n</mml:mi><mml:mo>=</mml:mo><mml:msup><mml:mi>x</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>+</mml:mo><mml:mi>N</mml:mi><mml:msup><mml:mi>y</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:math> and the Hecke groups <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:mi>H</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:msqrt><mml:mi>N… 2010 Nihal Yılmaz Özgür
+ Average behaviour of Hecke eigenvalues over certain polynomial 2023 Lalit Vaishya
+ PDF Chat Evaluation and Normalization of Jack Superpolynomials 2011 Patrick Desrosiers
Luc Lapointe
Pierre Mathieu
+ Statistics of Hecke eigenvalues for GL(𝑛) 2018 Yuk-Kam Lau
Ming Ho Ng
Yingnan Wang
+ PDF Chat The spectral decomposition of shifted convolution sums over number fields 2016 Péter Maga
+ A SHIFTED CONVOLUTION SUM OF AND THE FOURIER COEFFICIENTS OF HECKE–MAASS FORMS II 2019 Hengcai Tang
+ PDF Chat The spectral decomposition of $$|\theta |^2$$ 2020 Paul D. Nelson
+ DISTRIBUTION OF HECKE EIGENVALUES OF NEWFORMS IN SHORT INTERVALS 2012 Jie Wu
Wanming Zhai
+ Approximations to Hecke-Mahler Series 2014
+ Quantum variance for dihedral Maass forms 2022 Bingrong Huang
Stephen Lester
+ Central limit theorems for sums of quadratic characters, Hecke eigenforms, and elliptic curves 2019 M. Ram Murty
Neha Prabhu
+ Averages of shifted convolutions of general divisor sums involving Hecke eigenvalues 2021 Dan Wang
+ Moments of central 𝐿-values for Maass forms over imaginary quadratic fields 2022 Sheng‐Chi Liu
Zhi Qi