Type: Article
Publication Date: 2023-01-01
Citations: 6
DOI: https://doi.org/10.1515/dema-2022-0168
Abstract In this article, we investigate a class of analytic functions defined on the unit open disc <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi class="MJX-tex-caligraphic" mathvariant="script">U</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mo>{</m:mo> <m:mrow> <m:mi>z</m:mi> <m:mo>:</m:mo> <m:mo>∣</m:mo> <m:mi>z</m:mi> <m:mo>∣</m:mo> <m:mo><</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>}</m:mo> </m:mrow> </m:math> {\mathcal{U}}=\left\{z:| z| \lt 1\right\} , such that for every <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>f</m:mi> <m:mo>∈</m:mo> <m:msub> <m:mrow> <m:mi class="MJX-tex-caligraphic" mathvariant="script">P</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>β</m:mi> <m:mo>,</m:mo> <m:mi>γ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> f\in {{\mathcal{P}}}_{\alpha }\left(\beta ,\gamma ) , <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>α</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> </m:math> \alpha \gt 0 , <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mn>0</m:mn> <m:mo>≤</m:mo> <m:mi>β</m:mi> <m:mo>≤</m:mo> <m:mn>1</m:mn> </m:math> 0\le \beta \le 1 , <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>γ</m:mi> <m:mo>≤</m:mo> <m:mn>1</m:mn> </m:math> 0\lt \gamma \le 1 , and <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mo>∣</m:mo> <m:mi>z</m:mi> <m:mo>∣</m:mo> <m:mo><</m:mo> <m:mn>1</m:mn> </m:math> | z| \lt 1 , the inequality <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" display="block"> <m:mi mathvariant="normal">Re</m:mi> <m:mfenced open="{" close="}"> <m:mrow> <m:mfrac> <m:mrow> <m:mi>f</m:mi> <m:mo accent="false">′</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>+</m:mo> <m:mfrac> <m:mrow> <m:mn>1</m:mn> <m:mo>−</m:mo> <m:mi>γ</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> <m:mi>γ</m:mi> </m:mrow> </m:mfrac> <m:mi>z</m:mi> <m:msup> <m:mrow> <m:mi>f</m:mi> </m:mrow> <m:mrow> <m:mo accent="true">″</m:mo> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>−</m:mo> <m:mi>β</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> <m:mo>−</m:mo> <m:mi>β</m:mi> </m:mrow> </m:mfrac> </m:mrow> </m:mfenced> <m:mo>></m:mo> <m:mn>0</m:mn> </m:math> {\rm{Re}}\left\{\frac{f^{\prime} \left(z)+\frac{1-\gamma }{\alpha \gamma }z{f}^{^{\prime\prime} }\left(z)-\beta }{1-\beta }\right\}\gt 0 holds. We find conditions on the numbers <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> </m:math> \alpha ,\beta , and <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>γ</m:mi> </m:math> \gamma such that <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mrow> <m:mi class="MJX-tex-caligraphic" mathvariant="script">P</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>β</m:mi> <m:mo>,</m:mo> <m:mi>γ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>⊆</m:mo> <m:mi>S</m:mi> <m:mi>P</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>λ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> {{\mathcal{P}}}_{\alpha }\left(\beta ,\gamma )\subseteq SP\left(\lambda ) , for <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>λ</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mfrac> <m:mrow> <m:mi>π</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:mfrac> <m:mo>,</m:mo> <m:mfrac> <m:mrow> <m:mi>π</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:mfrac> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> \lambda \in \left(-\frac{\pi }{2},\frac{\pi }{2}) , where <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>S</m:mi> <m:mi>P</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>λ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> SP\left(\lambda ) denotes the set of all <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>λ</m:mi> </m:math> \lambda -spirallike functions. We also make use of Ruscheweyh’s duality theory to derive conditions on the numbers <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> <m:mo>,</m:mo> <m:mi>γ</m:mi> </m:math> \alpha ,\beta ,\gamma and the real-valued function <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>φ</m:mi> </m:math> \varphi so that the integral operator <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mrow> <m:mi>φ</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mrow> <m:mo>(</m:mo> </m:mrow> <m:mrow> <m:mi>f</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> {V}_{\varphi }(f) maps the set <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mrow> <m:mi class="MJX-tex-caligraphic" mathvariant="script">P</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>β</m:mi> <m:mo>,</m:mo> <m:mi>γ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> {{\mathcal{P}}}_{\alpha }\left(\beta ,\gamma ) into the set <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>S</m:mi> <m:mi>P</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>λ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> SP\left(\lambda ) , provided <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>φ</m:mi> </m:math> \varphi is non-negative normalized function <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msubsup> <m:mrow> <m:mrow> <m:mo>∫</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mi>φ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi mathvariant="normal">d</m:mi> <m:mi>t</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> \left({\int }_{0}^{1}\varphi \left(t){\rm{d}}t=1) and <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" display="block"> <m:msub> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mrow> <m:mi>φ</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mrow> <m:mo>(</m:mo> </m:mrow> <m:mrow> <m:mi>f</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:munderover> <m:mrow> <m:mrow> <m:mo>∫</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:munderover> <m:mi>φ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mfrac> <m:mrow> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>t</m:mi> </m:mrow> </m:mfrac> <m:mi mathvariant="normal">d</m:mi> <m:mi>t</m:mi> <m:mo>.</m:mo> </m:math> {V}_{\varphi }(f)\left(z)=\underset{0}{\overset{1}{\int }}\varphi \left(t)\frac{f\left(tz)}{t}{\rm{d}}t.