Estimates for L-functions in the Critical Strip Under GRH with Effective Applications

Type: Article

Publication Date: 2023-01-29

Citations: 3

DOI: https://doi.org/10.1007/s00009-023-02289-2

Abstract

Abstract Assuming the generalized Riemann hypothesis, we provide explicit upper bounds for moduli of $$\log {\mathcal {L}(s)}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mo>log</mml:mo> <mml:mrow> <mml:mi>L</mml:mi> <mml:mo>(</mml:mo> <mml:mi>s</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> and $$\mathcal {L}'(s)/\mathcal {L}(s)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi>L</mml:mi> </mml:mrow> <mml:mo>′</mml:mo> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>s</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>/</mml:mo> <mml:mi>L</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>s</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> in the neighbourhood of the 1-line when $$\mathcal {L}(s)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>L</mml:mi> <mml:mo>(</mml:mo> <mml:mi>s</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> are the Riemann, Dirichlet and Dedekind zeta-functions. To do this, we generalize Littlewood’s well-known conditional result to functions in the Selberg class with a polynomial Euler product, for which we also establish a suitable convexity estimate. As an application, we provide conditional and effective estimates for the Mertens function.

Locations

  • Mediterranean Journal of Mathematics - View - PDF

Similar Works

Action Title Year Authors
+ Estimates for $L$-functions in the critical strip under GRH with effective applications 2022 Aleksander Simonič
+ Bounding <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>ζ</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>s</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> in the critical strip 2010 Emanuel Carneiro
Vorrapan Chandee
+ A note on entire $L$-functions 2018 Andrés Chirre
+ PDF Chat Upper Bounds on L-Functions at the Edge of the Critical Strip 2009 Xiaozhou Li
+ On an effective order estimate of the Riemann zeta function in the critical strip 1990 K. M. Bartz
+ Explicit upper bounds for 𝐿-functions on the critical line 2009 Vorrapan Chandee
+ A Study of L-Functions: At The Edge of the Critical Strip and Within 2020 Allysa Lumley
+ Values of L-functions at integers outside the critical strip 2007 YoungJu Choie
Nikolaos Diamantis
+ WHEN IS AN L-FUNCTION NON-VANISHING IN PART OF THE CRITICAL STRIP? 2007 Stephen Gelbart
+ PDF Chat Non-vanishing of Dirichlet $L$-functions with Moduli in Short Intervals and Arithmetic Progressions 2024 Debmalya Basak
Alexandru Zaharescu
+ Lower bounds for Rankin–Selberg $L$-functions on the edge of the critical strip 2023 Qiao Zhang
+ PDF Chat Toward optimal exponent pairs 2024 Timothy S. Trudgian
Andrew Yang
+ Conditional estimates for $L$-functions in the Selberg class 2022 Neea Palojärvi
Aleksander Simonič
+ Non-vanishing of L functions at the center of the critical strip 1998 Jeffrey M. VanderKam
+ Large values of Dirichlet $L$- functions inside the critical strip 2018 Marc Munsch
+ PDF Chat Conditional upper and lower bounds for $L$-functions in the Selberg class close to the critical line 2024 Neea Palojärvi
Aleksander Simonič
+ PDF Chat $q$-effectiveness for holomorphic subelliptic multipliers 2022 Sung‐Yeon Kim
Dmitri Zaitsev
+ PDF Chat On quotients of derivatives of L-functions inside the critical strip 2024 Rashi Lunia
+ On 𝑞-analogues of the Euler constant and Lerch’s limit formula 2003 Nobushige Kurokawa
Masato Wakayama
+ On the critical strip of the Riemann zeta-function 2014 Niels Gleinig
Francesc Bars