Periodicity of joint co-tiles in $\mathbb{Z}^d$

Type: Preprint

Publication Date: 2023-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2301.11255

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ The structure of translational tilings in $\mathbb{Z}^d$ 2020 Rachel Greenfeld
Terence Tao
+ A Periodicity Result for Tilings of $\mathbb Z^3$ by Clusters of Prime-Squared Cardinality 2021 Abhishek Khetan
+ A Periodicity Result for Tilings of $\mathbb Z^3$ by Clusters of Prime-Squared Cardinality 2021 Abhishek Khetan
+ Tiling with arbitrary tiles 2015 Vytautas Gruslys
Imre Leader
Ta Sheng Tan
+ PDF Chat The structure of translational tilings in $\mathbb{Z}^d$ 2021 Rachel Greenfeld
Terence Tao
+ A note on reduction of tiling problems 2022 Tom Meyerovitch
Shrey Sanadhya
Yaar Solomon
+ Tilings of $\mathbb Z$ with multisets of distances 2023 Andrey Kupavskii
Elizaveta Popova
+ PDF Chat Undecidability of Translational Tiling with Three Tiles 2024 Chan Min Yang
Zhujun Zhang
+ Periodicity and decidability of tilings of $\mathbb{Z}^{2}$ 2016 Siddhartha Bhattacharya
+ Punctured intervals tile $\mathbb Z^3$ 2018 Stijn Cambie
+ Tiling $$\mathbb{Z}^{2}$$ by a Set of Four Elements 2015 Deā€Jun Feng
Yang Wang
+ Undecidability of translational monotilings 2023 Rachel Greenfeld
Terence Tao
+ Periodicity and decidability of tilings of ā„¤2 2020 Siddhartha Bhattacharya
+ A class of self-affine tiles in $\mathbb{R}^d$ that are $d$-dimensional tame balls 2022 Guotai Deng
Chuntai Liu
Sze-Man Ngai
+ Some Recent Developments of Self-Affine Tiles 2017 Chunā€Kit Lai
Kaā€Sing Lau
+ Combinatorial and harmonic-analytic methods for integer tilings 2021 Izabella Łaba
Itay Londner
+ Tiling with arbitrary tiles 2016 Vytautas Gruslys
Imre Leader
Ta Sheng Tan
+ Characterization of self-affine tile digit sets on $\mathbb{R}^n$ 2024 Qian Li
Hui Rao
+ PDF Chat Proof of Aperiodicity of hat tile using the Golden Ratio 2023 Saksham Sharma
+ PDF Chat A class of self-affine tiles in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msup></mml:math> that are d-dimensional tame balls 2022 Guotai Deng
Chuntai Liu
Szeā€Man Ngai

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors