Skeleton for the one-dimensional aggregation equation

Type: Article

Publication Date: 2023-01-28

Citations: 0

DOI: https://doi.org/10.1007/s13324-023-00780-3

Abstract

Abstract For the aggregation equation in $$\mathbb {R}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>R</mml:mi> </mml:math> , we consider the evolution of an initial density corresponding to the characteristic function of some set $$\Omega _0$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>Ω</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> . We study the limit measure at the blow up time 1 for $$\Omega _0$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>Ω</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> open or compact and we inspect the limit set (skeleton) where this measure is supported.

Locations

  • Analysis and Mathematical Physics - View - PDF

Similar Works

Action Title Year Authors
+ Skeleton for the one-dimensional aggregation equation 2021 Juan Carlos Cantero
Joan Orobitg
+ Finite-Time Blow-up of Solutions of an Aggregation Equation in R n 2007 Andrea L. Bertozzi
Thomas Laurent
+ Self-Similar Blowup Solutions of the Aggregation Equation 2010 Yanghong Huang
+ Analiticity of the Flow for the Aggregation Equation 2023 J. M. Burgués
Jordi Mateu
+ Survival probability and position distribution of a run and tumble particle in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>U</mml:mi> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>α</mml:mi> <mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> <mml:mi>x</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> </mml:math> potential with an absorbing boundary 2024 Sujit Kumar Nath
Sanjib Sabhapandit
+ Evolution of states in a continuum migration model 2016 Yuri Kondratiev
Yuri Kozitsky
+ Long-Time Dynamics for a Simple Aggregation Equation on the Sphere 2019 Amic Frouvelle
Jian‐Guo Liu
+ Density behaviour related to Lévy processes 2020 Loïc Chaumont
Jacek Małecki
+ Can a chemotaxis-consumption system recover from a measure-type aggregation state in arbitrary dimension? 2023 Frederic Heihoff
+ Aggregation in the Plane and Loewner's Equation 2001 Lennart Carleson
Nikolai Makarov
+ Diffusions, exit time moments and Weierstrass theorems 2004 Victor de la Peña
Patrick McDonald
+ PDF Chat Asymptotic behavior for a coalescence problem 1993 Oscar P. Bruno
Avner Friedman
Fernando Reitich
+ Dynamics and Structure of an Aggregation Growing from a Diffusion Field 1992 Yukio Saitō
Makio Uwaha
Susumu Seki
+ PDF Chat Evolution of states in a continuum migration model 2017 Yuri Kondratiev
Yuri Kozitsky
+ Blow-up dynamics for the aggregation equation with degenerate diffusion 2013 Yao Yao
Andrea L. Bertozzi
+ Aggregation Equation and Collapse to Singular Measure 2022 Taoufik Hmidi
Dong Li
+ Dynamics of one fold symmetric patches for the aggregation equation and collapse to singular measure 2018 Taoufik Hmidi
Dong Li
+ Self-similar solutions of kinetic-type equations: the boundary case 2018 Kamil Bogus
Dariusz Buraczewski
Alexander Marynych
+ Self-similar solutions of kinetic-type equations: the boundary case 2018 Kamil Bogus
Dariusz Buraczewski
Alexander Marynych
+ Singular patterns for an aggregation model with a confining potential 2012 Théodore Kolokolnikov
Yanghong Huang
Mark Pavlovski

Works That Cite This (0)

Action Title Year Authors