Type: Article
Publication Date: 2023-10-26
Citations: 1
DOI: https://doi.org/10.1002/rsa.21193
The goal of this paper is to show the existence (using probabilistic tools) of configurations of lines, boxes, and points with certain interesting combinatorial properties. (i) First, we construct a family of $n$ lines in $\mathbb{R}^3$ whose intersection graph is triangle-free of chromatic number $\Omega(n^{1/15})$. This improves the previously best known bound $\Omega(\log\log n)$ by Norin, and is also the first construction of a triangle-free intersection graph of simple geometric objects with polynomial chromatic number. (ii) Second, we construct a set of $n$ points in $\mathbb{R}^d$, whose Delaunay graph with respect to axis-parallel boxes has independence number at most $n\cdot (\log n)^{-(d-1)/2+o(1)}$. This extends the planar case considered by Chen, Pach, Szegedy, and Tardos.
Action | Title | Year | Authors |
---|