Global Newlander–Nirenberg Theorem for Domains with C2 Boundary

Type: Article

Publication Date: 2023-01-18

Citations: 1

DOI: https://doi.org/10.1307/mmj/20216084

View Chat PDF

Abstract

The Newlander–Nirenberg theorem says that a formally integrable complex structure is locally equivalent to the standard complex structure in the complex Euclidean space. In this paper, we consider two natural generalizations of the Newlander–Nirenberg theorem under the presence of a C2 strictly pseudoconvex boundary. When a given formally integrable complex structure X is defined on the closure of a bounded strictly pseudoconvex domain with C2 boundary D⊂Cn, we show the existence of global holomorphic coordinate systems defined on D‾ that transform X into the standard complex structure provided that X is sufficiently close to the standard complex structure. Moreover, we show that such closeness is stable under a small C2 perturbation of ∂D. As a consequence, when a given formally integrable complex structure is defined on a one-sided neighborhood of some point in a C2 real hypersurface M⊂Cn, we prove the existence of local one-sided holomorphic coordinate systems provided that M is strictly pseudoconvex with respect to the given complex structure. We also obtain results when the structures are finite smooth.

Locations

  • The Michigan Mathematical Journal - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Global Newlander-Nirenberg theorem for domains with $C^2$ boundary 2020 Chun Gan
Xianghong Gong
+ On $1/2$ estimate for global Newlander-Nirenberg theorem 2023 Ziming Shi
+ Bounded strictly pseudoconvex domains in C2 with obstruction flat boundary 2021 Sean N. Curry
Peter Ebenfelt
+ Bounded strictly pseudoconvex domains in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">C</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> with obstruction flat boundary II 2019 Sean N. Curry
Peter Ebenfelt
+ PDF Chat Global Newlander-Nirenberg theorem on domains with finite smooth boundary in complex manifolds 2024 Xianghong Gong
Ziming Shi
+ Bounded strictly pseudoconvex domains in $\mathbb{C}^2$ with obstruction flat boundary II 2018 Sean N. Curry
Peter Ebenfelt
+ Bounded strictly pseudoconvex domains in $\mathbb{C}^2$ with obstruction flat boundary 2018 Sean N. Curry
Peter Ebenfelt
+ Exposing boundary points of strongly pseudoconvex subvarieties in complex spaces 2016 Fusheng Deng
John Erik Fornæss
Erlend Fornæss Wold
+ PDF Chat Compactness of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mover accent="true"><mml:mrow><mml:mo>∂</mml:mo></mml:mrow><mml:mrow><mml:mo stretchy="false">¯</mml:mo></mml:mrow></mml:mover></mml:math>-Neumann problem on domains with bounded intrinsic geometry 2021 Andrew Zimmer
+ Q-pseudoconvex and q-holomorphically convex domains 2018 George‐Ionuţ Ioniţă
Ovidiu Preda
+ Q-pseudoconvex and q-holomorphically convex domains 2018 George‐Ionuţ Ioniţă
Ovidiu Preda
+ Exposing boundary points of strongly pseudoconvex subvarieties in complex spaces 2017 Fēi Dèng
John Erik Fornæss
Erlend Fornæss Wold
+ Geometric analysis in several complex variables 1994 Jimmy Xiangji Huang
Steven G. Krantz
+ PDF Chat A Frobenius–Nirenberg theorem with parameter 2018 Xianghong Gong
+ A construction of complete complex hypersurfaces in the ball with control on the topology 2015 Antonio Alarcón
Josip Globevnik
Francisco J. López
+ A construction of complete complex hypersurfaces in the ball with control on the topology 2015 Antonio Alarcón
Josip Globevnik
Francisco J. Lopez
+ PDF Chat GEOMETRIC CHARACTERIZATION OF q-PSEUDOCONVEX DOMAINS IN ℂ<sup>n </sup> 2017 Hedi Khedhiri
+ Compactness of the $\bar{\partial}$-Neumann problem on domains with bounded intrinsic geometry 2020 Andrew Zimmer
+ PDF Chat A family of compact strictly pseudoconvex hypersurfaces in $\mathbb{C}^2$ without umbilical points 2018 Peter Ebenfelt
Duong Ngoc Son
Dmitri Zaitsev
+ Integrability of Rough Almost Complex Structures 2007 C. Denson Hill
Michael E. Taylor

Citing (17)

Action Title Year Authors
+ PDF Chat On the proof of Kuranishi’s embedding theorem 1989 S. M. Webster
+ PDF Chat Deformation of complex structures on manifolds with boundary. I. The stable case 1977 Richard S. Hamilton
+ PDF Chat A Newlander-Nirenberg theorem for manifolds with boundary. 1988 David Catlin
+ PDF Chat Regularity in the Local CR Embedding Problem 2010 Xianghong Gong
S. M. Webster
+ Versal embeddings of compact 3-pseudoconcave CR submanifolds 2004 Peter L. Polyakov
+ The inverse function theorem of Nash and Moser 1982 Richard S. Hamilton
+ A new proof of the Newlander-Nirenberg theorem 1989 S. M. Webster
+ A Remark on Almost Complex Structures with Boundary 1989 Nicholas Hanges
Howard Jacobowitz
+ A decomposition problem on weakly pseudoconvex domains 1999 Joachim Michel
Mei-Chi Shaw
+ Integral representations on weakly pseudoconvex domains 1991 Joachim Michel
+ PDF Chat Regularity for The CR Vector Bundle Problem I 2010 Xianghong Gong
S. M. Webster
+ Some Integration Problems in Almost-Complex and Complex Manifolds 1963 Albert Nijenhuis
William B. Woolf
+ Complex Analytic Coordinates in Almost Complex Manifolds 1957 August Newlander
Louis Nirenberg
+ PDF Chat A Frobenius–Nirenberg theorem with parameter 2018 Xianghong Gong
+ PDF Chat Regularity for the CR vector bundle problem II 2011 Xianghong Gong
S. M. Webster
+ Sharp regularity for the integrability of elliptic structures 2019 Brian Street
+ PDF Chat The integrability problem for CR vector bundles 1991 S. M. Webster