Algorithmic counting of nonequivalent compact Huffman codes

Type: Article

Publication Date: 2023-01-12

Citations: 0

DOI: https://doi.org/10.1007/s00200-022-00593-0

Abstract

Abstract It is known that the following five counting problems lead to the same integer sequence $${f_t}({n})$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> : the number of nonequivalent compact Huffman codes of length n over an alphabet of t letters, the number of “nonequivalent” complete rooted t -ary trees (level-greedy trees) with n leaves, the number of “proper” words (in the sense of Even and Lempel), the number of bounded degree sequences (in the sense of Komlós, Moser, and Nemetz), and the number of ways of writing $$\begin{aligned} 1= \frac{1}{t^{x_1}}+ \dots + \frac{1}{t^{x_n}} \end{aligned}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>=</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:msup> <mml:mi>t</mml:mi> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:msup> </mml:mfrac> <mml:mo>+</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>+</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:msup> <mml:mi>t</mml:mi> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:msup> </mml:mfrac> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:math> with integers $$0 \le x_1 \le x_2 \le \dots \le x_n$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>≤</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>≤</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>≤</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>≤</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> </mml:math> . In this work, we show that one can compute this sequence for all $$n&lt;N$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>&lt;</mml:mo> <mml:mi>N</mml:mi> </mml:mrow> </mml:math> with essentially one power series division. In total we need at most $$N^{1+\varepsilon }$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>N</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> </mml:mrow> </mml:msup> </mml:math> additions and multiplications of integers of cN bits (for a positive constant $$c&lt;1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>c</mml:mi> <mml:mo>&lt;</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> depending on t only) or $$N^{2+\varepsilon }$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>N</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> </mml:mrow> </mml:msup> </mml:math> bit operations, respectively, for any $$\varepsilon &gt;0$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>ε</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> . This improves an earlier bound by Even and Lempel who needed $${O}({{N^3}})$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>N</mml:mi> <mml:mn>3</mml:mn> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> operations in the integer ring or $$O({N^4})$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>N</mml:mi> <mml:mn>4</mml:mn> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> bit operations, respectively.

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • Applicable Algebra in Engineering Communication and Computing - View - PDF

Similar Works

Action Title Year Authors
+ Algorithmic counting of nonequivalent compact Huffman codes 2019 Christian Elsholtz
Clemens Heuberger
Daniel Krenn
+ PDF Chat The Number of Huffman Codes, Compact Trees, and Sums of Unit Fractions 2012 Christian Elsholtz
Clemens Heuberger
Helmut Prodinger
+ Bounds on the Number of Huffman and Binary-Ternary Trees 2013 Angeline Rao
Ying Liu
Yezhou Feng
Jian Shen
+ Meta-Fibonacci Sequences, Binary Trees, and Extremal Compact Codes 2005 Brad Jackson
Frank Ruskey
+ Coding and counting spanning trees in Kleitman-Golden graphs 1991 L. M. Koganov
+ PDF Chat The minimal numbers of binary forms 1940 Rufus Oldenburger
Arthur Porges
+ PDF Chat Non-enumerated 2020
+ Optimal enumerations and optimal gödel numberings 1974 C. P. Schnorr
+ Optimal Prefix Free Code in Linear Time 2012 Jérémy Barbay
+ Optimal Prefix Free Code in Linear Time 2012 Jérémy Barbay
+ Embedding Complete Ternary Trees in Recursive Circulants 1999 Hyeong-Ok Lee
Hyeong-Seok Im
+ Enumerating Nondegenerate Permutations 2007 Luke O’Connor
+ PDF Chat An enumeration of 1-perfect ternary codes 2023 Minjia Shi
Denis S. Krotov
+ PDF Chat Compact integers and factorials 2007 Vladimir Shevelev
+ PDF Chat Non-archimedean strings and Bruhat-Tits trees 1989 A. Zabrodin
+ Exact Enumerations 2009 I. G. Enting
Iwan Jensen
+ PDF Chat Efficient and compact representations of some non-canonical prefix-free codes 2022 Antonio Fariña
Travis Gagie
Szymon Grabowski
Giovanni Manzini
Gonzalo Navarro
Alberto Ordóñez
+ PDF Chat Efficient and Compact Representations of Some Non-canonical Prefix-Free Codes 2016 Antonio Fariña
Travis Gagie
Giovanni Manzini
Gonzalo Navarro
Alberto Ordóñez
+ PDF Chat The Minimal Clones above the Permutations 2007 Hajime Machida
Michael Pinsker
+ A note on Prüfer-like coding and counting forests of uniform hypertrees 2011 Christian Lavault

Works That Cite This (0)

Action Title Year Authors