Cyclic projective planes and Wada dessins

Type: Article

Publication Date: 2001-01-01

Citations: 8

DOI: https://doi.org/10.4171/dm/96

Abstract

Bipartite graphs occur in many parts of mathematics, and their embeddings into orientable compact surfaces are an old subject. A new interest comes from the fact that these embeddings give dessins d'enfants providing the surface with a unique structure as a Riemann surface and algebraic curve. In this paper, we study the (surprisingly many different) dessins coming from the graphs of finite cyclic projective planes. It turns out that all reasonable questions about these dessins – uniformity, regularity, automorphism groups, cartographic groups, defining equations of the algebraic curves, their fields of definition, Galois actions – depend on cyclic orderings of difference sets for the projective planes. We explain the interplay between number theoretic problems concerning these cyclic ordered difference sets and topological properties of the dessin like e.g. the Wada property that every vertex lies on the border of every cell.

Locations

  • Documenta Mathematica - View - PDF
  • Publication Server of Goethe University Frankfurt am Main (Goethe University Frankfurt) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Wada dessins associated with finite projective spaces and Frobenius compatibility 2011 Cristina Sarti
+ Wada Dessins associated with Finite Projective Spaces and Frobenius Compatibility 2010 Cristina Sarti
+ Wada Dessins associated with Finite Projective Spaces and Frobenius Compatibility 2010 Cristina Sarti
+ Dessins d'enfants and some holomorphic structures on the Loch Ness Monster 2020 Yasmina Atarihuana
Juan Camilo García
Rubén A. Hidalgo
Saúl Quispe
Camilo Ramírez Maluendas
+ Dessins d'enfants and some holomorphic structures on the Loch Ness Monster 2020 Yasmina Atarihuana
Juan Antonio Garcı́a
Rubén A. Hidalgo
Saúl Quispe
Camilo Ramírez Maluendas
+ Complete regular dessins and skew-morphisms of cyclic groups 2018 Yan‐Quan Feng
Kan Hu
Roman Nedela
Martin Škoviera
Na-Er Wang
+ PDF Chat Complete regular dessins and skew-morphisms of cyclic groups 2020 Yan‐Quan Feng
Kan Hu
Roman Nedela
Martin Škoviera
Na-Er Wang
+ Automorphism groups of non-orientable Riemann surfaces 2015 E. Bujalance
Francisco Javier Cirre
J. J. Etayo
Grzegorz Gromadzki
Ernesto Martínez
+ PDF Chat Wilson's map operations on regular dessins and cyclotomic fields of definition 2009 Gareth A. Jones
Manfred Streit
Jürgen Wolfart
+ Unicellular cartography and Galois orbits of plane trees 1997 Nikolai Adrianov
G. B. Shabat
+ PDF Chat Galois actions on regular dessins of small genera 2013 Marston Conder
Gareth A. Jones
Manfred Streit
Jürgen Wolfart
+ PDF Chat On the existence of branched coverings between surfaces with prescribed branch data, I 2006 Ekaterina Pervova
Carlo Petronio
+ PDF Chat Dessins D’enfants and Some Holomorphic Structures on the Loch Ness Monster 2021 Yasmina Atarihuana
Juan Camilo García
Rubén A. Hidalgo
Saúl Quispe
Camilo Ramírez Maluendas
+ Wilson Operations 2016 Gareth A. Jones
Jürgen Wolfart
+ Graph theory and finite projective planes 1969 Sabra S. Anderson
+ Finite Projective Planes with Abelian Transitive Collineation Groups 1998 Chat Yin Ho
+ Future directions in automorphisms of surfaces, graphs, and other related topics 2022 Sean A Broughton
Jennifer Paulhus
Aaron Wootton
+ PDF Chat An elementary approach to dessins d’enfants and the Grothendieck–Teichmüller group 2015 Pierre Guillot
+ Bipartite graph embeddings, Riemann surfaces and Galois groups 2015 Gareth A. Jones
+ Galois Actions 2016 Gareth A. Jones
Jürgen Wolfart