The critical values of generalizations of the Hurwitz zeta function

Type: Article

Publication Date: 2010-01-01

Citations: 2

DOI: https://doi.org/10.4171/dm/303

Abstract

We investigate a few types of generalizations of the Hurwitz zeta function, written Z(s,a) in this abstract, where s is a complex variable and a is a parameter in the domain that depends on the type. In the easiest case we take a\in\mathbf R, and one of our main results is that Z(-m,a) is a constant times E_m(a) for 0\le m\in\mathbf Z, where E_m is the generalized Euler polynomial of degree n. In another case, a is a positive definite real symmetric matrix of size n, and Z(-m,a) for 0\le m\in\mathbf Z is a polynomial function of the entries of a of degree \le mn. We will also define Z with a totally real number field as the base field, and will show that Z(-m,a)\in\mathbf Q in a typical case.

Locations

  • Documenta Mathematica - View - PDF

Similar Works

Action Title Year Authors
+ The Critical Values of Generalizations of the Hurwitz Zeta Function 2016 Goro Shimura
+ The Hurwitz Zeta Function at the Positive Integers 2020 Jose Risomar Sousa
+ The Hurwitz Zeta Function at the Positive Integers 2019 Jose Risomar Sousa
+ The Hurwitz Zeta Function at the Positive Integers 2019 Jose Risomar Sousa
+ Further results involving a class of generalized Hurwitz-Lerch zeta functions 2014 H. M. Srivastava
Sébastien Gaboury
B.-J. Fugère
+ A FURTHER EXTENSION OF THE GENERALIZED HURWITZ-LERCH ZETA FUNCTION 2017 Junesang Choi
Rakesh K. Parmar
Ravinder Krishna Raina
+ THE GENERALIZED HURWITZ ZETA FUNCTION 1995 Tae-Young Seo
Bo-Myoung Ok
+ Moments of the Hurwitz zeta function on the critical line 2021 Anurag Sahay
+ An extended general Hurwitz–Lerch zeta function as a Mathieu<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mrow><mml:mo>(</mml:mo><mml:mstyle mathvariant="bold-italic"><mml:mi>a</mml:mi></mml:mstyle><mml:mo>,</mml:mo><mml:mstyle mathvariant="bold"><mml:mi>λ</mml:mi></mml:mstyle><mml:mo>)</mml:mo></mml:mrow></mml:math>-series 2011 Dragana Jankov Maširević
Tibor K. Pogány
Ram K. Saxena
+ A generalized Euler-Maclaurin formula for the Hurwitz zeta function 2006 Eugenio P. Balanzario
+ ON A GENERALIZATION OF THE HURWITZ ZETA FUNCTION ζ (s, a) 2015 Junesang Choi
+ PDF Chat Hermite's formulas for $q$-analogues of Hurwitz zeta functions 2011 Y Tomita
+ PDF Chat The Zeta and Related Functions: Recent Developments 2019 H. M. Srivastava
+ A note on the zeros of generalized Hurwitz zeta functions 2018 Giamila Zaghloul
+ PDF Chat The Hurwitz Zeta Function at the Positive Integers 2019 Jose Risomar Sousa
+ A Note on the Hurwitz Zeta Function 2000 Đurđe Cvijović
Jacek Klinowski
+ A NOTE ON THE HURWITZ ZETA FUNCTION 2017 Jamal Salah
+ A few remarks on values of Hurwitz Zeta function at natural and rational arguments 2014 Paweł J. Szabłowski
+ New developments toward the Gonek Conjecture on the Hurwitz zeta-function 2023 Masahiro Mine
+ PDF Chat Moments of the Hurwitz zeta function on the critical line 2022 Anurag Sahay