Undecidable Translational Tilings with Only Two Tiles, or One Nonabelian Tile

Type: Article

Publication Date: 2023-01-04

Citations: 6

DOI: https://doi.org/10.1007/s00454-022-00426-4

Abstract

Abstract We construct an example of a group $$G = \mathbb {Z}^2 \times G_0$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>G</mml:mi><mml:mo>=</mml:mo><mml:msup><mml:mrow><mml:mi>Z</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msup><mml:mo>×</mml:mo><mml:msub><mml:mi>G</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:mrow></mml:math> for a finite abelian group $$G_0$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>G</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math> , a subset E of $$G_0$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>G</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math> , and two finite subsets $$F_1,F_2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>F</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mi>F</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math> of G , such that it is undecidable in ZFC whether $$\mathbb {Z}^2\times E$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mrow><mml:mi>Z</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msup><mml:mo>×</mml:mo><mml:mi>E</mml:mi></mml:mrow></mml:math> can be tiled by translations of $$F_1,F_2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>F</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mi>F</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math> . In particular, this implies that this tiling problem is aperiodic , in the sense that (in the standard universe of ZFC) there exist translational tilings of E by the tiles $$F_1,F_2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>F</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mi>F</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math> , but no periodic tilings. Previously, such aperiodic or undecidable translational tilings were only constructed for sets of eleven or more tiles (mostly in $$\mathbb {Z}^2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>Z</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:math> ). A similar construction also applies for $$G=\mathbb {Z}^d$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>G</mml:mi><mml:mo>=</mml:mo><mml:msup><mml:mrow><mml:mi>Z</mml:mi></mml:mrow><mml:mi>d</mml:mi></mml:msup></mml:mrow></mml:math> for sufficiently large d . If one allows the group $$G_0$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>G</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math> to be non-abelian, a variant of the construction produces an undecidable translational tiling with only one tile F . The argument proceeds by first observing that a single tiling equation is able to encode an arbitrary system of tiling equations, which in turn can encode an arbitrary system of certain functional equations once one has two or more tiles. In particular, one can use two tiles to encode tiling problems for an arbitrary number of tiles.

Locations

  • Discrete & Computational Geometry - View - PDF
  • arXiv (Cornell University) - View - PDF
  • PubMed - View
  • Discrete & Computational Geometry - View - PDF
  • arXiv (Cornell University) - View - PDF
  • PubMed - View
  • Discrete & Computational Geometry - View - PDF
  • arXiv (Cornell University) - View - PDF
  • PubMed - View

Similar Works

Action Title Year Authors
+ Undecidable translational tilings with only two tiles, or one nonabelian tile 2021 Rachel Greenfeld
Terence Tao
+ Undecidability of translational monotilings 2023 Rachel Greenfeld
Terence Tao
+ Maximally Even Tilings: Theory and Algorithms 2019 Jeremiah D Kastine
+ Tilings* 2010 Federico Ardila
Richard P. Stanley
+ PDF Chat Algorithms for translational tiling 2009 Mihail N. Kolountzakis
Máté Matolcsi
+ Combinatoric of Karyon Tilings 2024 В. Г. Журавлев
+ PDF Chat Undecidability of Translational Tiling of the 3-dimensional Space with a Set of 6 Polycubes 2024 Chao Yang
Zhujun Zhang
+ PDF Chat The structure of tiles in $\mathbb{Z}_{p^n}\times \mathbb{Z}_q$ and $\mathbb{Z}_{p^n}\times \mathbb{Z}_p$ 2024 Shilei Fan
Mamateli Kadir
P. L. Li
+ Rhombic tilings of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si497.gif" display="inline" overflow="scroll"><mml:mrow><mml:mo>(</mml:mo><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math>-Ovals, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si498.gif" display="inline" overflow="scroll"><mml:mrow><mml:mo>(</mml:mo><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo>,</mml:mo><mml:mi>λ</mml:mi><mml:mo… 2012 John P. McSorley
Alan H. Schoen
+ A Brief Introduction to Tilings 1989 Marjorie Senechal
+ Hierarchical Tilings 1991 Marjorie Senechal
+ Tiling with arbitrary tiles 2015 Vytautas Gruslys
Imre Leader
Ta Sheng Tan
+ A class of self-affine tiles in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:math> that are tame balls revisited 2024 Chuntai Liu
+ PDF The Coven–Meyerowitz tiling conditions for 3 odd prime factors 2022 Izabella Łaba
Itay Londner
+ PDF $\it \Pi^0_1$ Sets and Tilings 2011 Emmanuel Jeandel
Pascal Vanier
+ PDF Chat Tilings with Infinite Local Complexity 2015 Natalie Priebe Frank
+ 1D Effectively Closed Subshifts and 2D Tilings 2010 Bruno Durand
Andrei Romashchenko
Alexander Shen
+ PDF 1D Effectively Closed Subshifts and 2D Tilings 2010 Bruno Durand
Andrei Romashchenko
Alexander Shen
+ Periodicity and decidability of tilings of ℤ2 2020 Siddhartha Bhattacharya
+ PDF Keller’s cube-tiling conjecture is false in high dimensions 1992 Jeffrey C. Lagarias
Peter W. Shor