A generalization of the discrete Rodrigues formula for Meixner polynomials

Type: Article

Publication Date: 2022-01-01

Citations: 2

DOI: https://doi.org/10.4213/sm9765

Abstract

Изучается обобщение многочленов Мейкснера, приводящее к новой конструкции приближений Апери. В терминах алгебраических функций получено предельное распределение нулей масштабированных многочленов. Это распределение является решением некоторой векторной задачи равновесия теории логарифмического потенциала. Библиография: 21 название.

Locations

  • Математический сборник - View - PDF

Similar Works

Action Title Year Authors
+ On Polynomials Defined by the Discrete Rodrigues Formula 2023 В. Н. Сорокин
+ On Polynomials Defined by the Discrete Rodrigues Formula 2023 В. Н. Сорокин
+ A study of a class of polynomials defined by generalised Rodrigue's formula 1989 Snajay Khanna
+ A Rodrigues-type formula for the 𝑞-Racah polynomials and some related results 1994 Ismor Fischer
+ MULTIVARIABLE ANALOGUE OF GOULD AND HOPPER’S POLYNOMIALS DEFINED BY RODRIGUES’ FORMULA 2015 ABHA TIWARI R. C. SINGH CHANDEL
+ On Rodrigues' formulae for a generalized hypergeometric polynomial and their applications 1970 Shah Manilal
+ PDF Chat NOTES ON THE RODRIGUES FORMULAS FOR TWO KINDS OF THE CHEBYSHEV POLYNOMIALS 2018 Feng Qi
Da‐Wei Niu
Dongkyu Lim
+ A matrix Rodrigues formula for classical orthogonal polynomials in two variables 2008 Marı́a Álvarez de Morales
Lidia Fernández
Teresa E. Pérez
Miguel A. Piñar
+ A matrix Rodrigues formula for classical orthogonal polynomials in two variables 2006 A. Alvarez de Morales
Lidia Fernández
Teresa E. Pérez
Miguel A. Piñar
+ PDF Chat A new discrete analog of the Legendre polynomials 1970 Mitsuru Wilson
+ PDF Chat Basic Analogue of Legendre Polynomial and its Difference Equation 2018 Javid Ahmad Ganie
Renu Jain
+ Rodrigues formula and recurrence coefficients for non-symmetric Dunkl-classical orthogonal polynomials 2021 B. Bouras
Y. Habbachi
Francisco Marcellán
+ A simple approach to Jacobi polynomials 2007 Hans J. Weber
+ Fractional calculus and generalized Rodrigues formula 2003 S. Z. Rida
A. M. A. El‐Sayed
+ PDF Chat On the Fractional Order Rodrigues Formula for the Shifted Legendre-Type Matrix Polynomials 2020 Mohra Zayed
M. Abul‐Ez
Mohamed Abdalla
Nasser Saad
+ PDF Chat Legendre-Gould Hopper-Based Sheffer Polynomials and Operational Methods 2020 Nabiullah Khan
Mohd Aman
Talha Usman
Junesang Choi
+ A New Way to Compute the Rodrigues Coefficients of Functions of the Lie Groups of Matrices 2016 Dorin Andrica
Oana Liliana Chender
+ The Rodrigues formula and polynomial differential operators 1981 Richard Rasala
+ PDF Chat Diverse Properties and Approximate Roots for a Novel Kinds of the (p,q)-Cosine and (p,q)-Sine Geometric Polynomials 2022 Sunil Kumar Sharma
Waseem A. Khan
Cheon Seoung Ryoo
Uğur Duran
+ An extension of Hermite polynomials 2014 Ghulam Farid
G. M. Habibullah