Type: Article
Publication Date: 2022-06-01
Citations: 200
DOI: https://doi.org/10.1109/cvpr52688.2022.00836
Recently, zero-shot and few-shot learning via Contrastive Vision-Language Pre-training (CLIP) have shown inspirational performance on 2D visual recognition, which learns to match images with their corresponding texts in open-vocabulary settings. However, it remains under explored that whether CLIP, pre-trained by large-scale image-text pairs in 2D, can be generalized to 3D recognition. In this paper, we identify such a setting is feasible by proposing PointCLIP, which conducts alignment between CLIP-encoded point clouds and 3D category texts. Specifically, we encode a point cloud by projecting it onto multi-view depth maps and aggregate the view-wise zero-shot prediction in an end-to-end manner, which achieves efficient knowledge transfer from 2D to 3D. We further design an inter-view adapter to better extract the global feature and adaptively fuse the 3D few-shot knowledge into CLIP pre-trained in 2D. By just fine-tuning the adapter under few-shot settings, the performance of PointCLIP could be largely improved. In addition, we observe the knowledge complementary property between PointCLIP and classical 3D-supervised networks. Via simple ensemble during inference, PointCLIP contributes to favorable performance enhancement over state-of-the-art 3D networks. Therefore, PointCLIP is a promising alternative for effective 3D point cloud understanding under low data regime with marginal resource cost. We conduct thorough experiments on Model-NetlO, ModelNet40 and ScanObjectNN to demonstrate the effectiveness of PointCLIP. Code is available at https://github.com/ZrrSkywalker/PointCLIP.