Type: Article
Publication Date: 2022-12-24
Citations: 1
DOI: https://doi.org/10.1007/s00526-022-02324-2
Abstract We prove a new $$\mathcal {A}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>A</mml:mi> </mml:math> -caloric approximation lemma compatible with an Orlicz setting. With this result, we establish a partial regularity result for parabolic systems of the type $$\begin{aligned} u_{t}- {{\,\textrm{div}\,}}a(Du)=0. \end{aligned}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mrow> <mml:msub> <mml:mi>u</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>-</mml:mo> <mml:mrow> <mml:mspace /> <mml:mtext>div</mml:mtext> <mml:mspace /> </mml:mrow> <mml:mi>a</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>D</mml:mi> <mml:mi>u</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mo>.</mml:mo> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:math> Here the growth of a is bounded by the derivative of an N -function $${\varphi }$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>φ</mml:mi> </mml:math> . The primary assumption for $${\varphi }$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>φ</mml:mi> </mml:math> is that $$t{\varphi }''(t)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>t</mml:mi> <mml:msup> <mml:mrow> <mml:mi>φ</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>′</mml:mo> <mml:mo>′</mml:mo> </mml:mrow> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> and $${\varphi }'(t)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi>φ</mml:mi> </mml:mrow> <mml:mo>′</mml:mo> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> are uniformly comparable on $$(0,\infty )$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>∞</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> .
Action | Title | Year | Authors |
---|---|---|---|
+ | Partial regularity for degenerate parabolic systems with general growth via caloric approximations | 2024 |
Jihoon Ok Giovanni Scilla Bianca Stroffolini |