$$\mathcal {A}$$-caloric approximation and partial regularity for parabolic systems with Orlicz growth

Type: Article

Publication Date: 2022-12-24

Citations: 1

DOI: https://doi.org/10.1007/s00526-022-02324-2

Abstract

Abstract We prove a new $$\mathcal {A}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>A</mml:mi> </mml:math> -caloric approximation lemma compatible with an Orlicz setting. With this result, we establish a partial regularity result for parabolic systems of the type $$\begin{aligned} u_{t}- {{\,\textrm{div}\,}}a(Du)=0. \end{aligned}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mrow> <mml:msub> <mml:mi>u</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>-</mml:mo> <mml:mrow> <mml:mspace /> <mml:mtext>div</mml:mtext> <mml:mspace /> </mml:mrow> <mml:mi>a</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>D</mml:mi> <mml:mi>u</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mo>.</mml:mo> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:math> Here the growth of a is bounded by the derivative of an N -function $${\varphi }$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>φ</mml:mi> </mml:math> . The primary assumption for $${\varphi }$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>φ</mml:mi> </mml:math> is that $$t{\varphi }''(t)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>t</mml:mi> <mml:msup> <mml:mrow> <mml:mi>φ</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>′</mml:mo> <mml:mo>′</mml:mo> </mml:mrow> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> and $${\varphi }'(t)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi>φ</mml:mi> </mml:mrow> <mml:mo>′</mml:mo> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> are uniformly comparable on $$(0,\infty )$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>∞</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> .

Locations

  • Calculus of Variations and Partial Differential Equations - View - PDF

Similar Works

Action Title Year Authors
+ $\mathcal{A}$-caloric approximation and partial regularity for parabolic systems with Orlicz growth 2022 Mikil Foss
Teresa Isernia
Chiara Leone
Anna Verde
+ Partial regularity for degenerate parabolic systems with general growth via caloric approximations 2023 Jihoon Ok
Giovanni Scilla
Bianca Stroffolini
+ PDF Chat Partial regularity for subquadratic parabolic systems by $\mathcal{A}$-caloric approximation 2011 Christoph Scheven
+ Partial regularity for degenerate parabolic systems with general growth via caloric approximations 2024 Jihoon Ok
Giovanni Scilla
Bianca Stroffolini
+ Regularity of weak solutions to linear and quasilinear parabolic systems of non-divergence type with non-smooth in time principal matrix: <i>A</i>(<i>t</i>)-caloric method 2016 A. A. Arkhipova
Jana Stará
+ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi mathvariant="script">C</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mi>α</mml:mi></mml:mrow></mml:msup></mml:math> partial regularity result for elliptic systems with discontinuous coefficients and Orlicz growth 2023 Francesca Anceschi
Teresa Isernia
+ PDF Chat Partial regularity for parabolic systems with VMO-coefficients 2021 Leon Mons
+ PDF Chat Partial regularity and singular sets of solutions of higher order parabolic systems 2008 Verena Bögelein
+ Weighted <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:math>-type regularity estimates for nonlinear parabolic equations with Orlicz growth 2022 Fengping Yao
+ Partial regularity for subquadratic parabolic systems under controllable growth conditions 2016 Yichen Dai
Zhong Tan
Shuhong Chen
+ Partial boundary regularity of non-linear parabolic systems in low dimensions 2014 Verena Bögelein
+ Pseudo-differential operators and maximal regularity results for non-autonomous parabolic equations 1999 Matthias Hieber
Sylvie Monniaux
+ Partial regularity for parabolic systems with non-standard growth 2011 Frank Duzaar
Jens Habermann
+ PDF Chat Potential Estimates and Quasilinear Parabolic Equations with Measure Data 2023 Quoc Hung Nguyen
+ Interpolation inequalities for partial regularity 2022 Christoph Hamburger
+ Second order parabolic systems, optimal regularity, and singular sets of solutions 2005 Giuseppe Mingione
Frank Duzaar
+ Partial regularity for subquadratic parabolic systems with continuous coefficients 2011 Mikil Foss
Joe Geisbauer
+ Partial regularity of minimizers of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mi>p</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math>-growth functionals with<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" display="inline" overflow="scroll"><mml:mi>p</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>&gt;</mml:mo><mml… 2017 Erika Nio
Kunihiro Usuba
+ Regularity for parabolic systems of Uhlenbeck type with Orlicz growth 2016 Lars Diening
Toni Scharle
Sebastian Schwarzacher
+ Generalized Morrey regularity of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e22" altimg="si2.svg"><mml:mrow><mml:mn>2</mml:mn><mml:mi>b</mml:mi></mml:mrow></mml:math>-parabolic systems 2020 Dian K. Palagachev
Lubomira G. Softova