ON THE WELLPOSEDNESS OF THE KDV-K-S EQUATION IN PERIODIC SOBOLEV SPACES

Type: Book-Chapter

Publication Date: 2022-12-06

Citations: 0

DOI: https://doi.org/10.22533/at.ed.5432206125

Similar Works

Action Title Year Authors
+ On the well-posedness of the periodic KdV equation in high regularity classes 2008 Thomas Kappeler
Jürgen Pöschel
+ On the Periodic Kdv Equation in 2008 Thomas Kappeler
Jürgen Pöschel
+ On the periodic KdV equation in weighted Sobolev spaces 2008 Jürgen Pöschel
Thomas Kappeler
+ On unconditional well-posedness for the periodic modified korteweg-de vries equation 2016 Luc Molinet
Didier Pilod
Stéphane Vento
+ On unconditional well-posedness for the periodic modified Korteweg-de Vries equation 2016 Luc Molinet
Didier Pilod
Stéphane Vento
+ Existence and Continuous Dependence of the Local Solution of Non-Homogeneous KdV-K-S Equation in Periodic Sobolev Spaces 2021 Yolanda Silvia Santiago Ayala
Santiago César Rojas Romero
+ On the wellposedness of the KdV/KdV2 equations and their frequency maps 2017 Jan-Cornelius Molnar
Thomas Kappeler
+ Well-posedness for the KdV-type equations with low regularity data 2011 孝盛 加藤
+ On the wellposedness of the KdV equation on the space of pseudomeasures 2016 Thomas Kappeler
Jan-Cornelius Molnar
+ On well-posedness of 𝛼-SQG equations in the half-plane 2024 In-Jee Jeong
Junha Kim
Yao Yao
+ PDF Chat On the extension of the frequency maps of the KdV and the KdV2 equations 2016 Thomas Kappeler
Jan-Cornelius Molnar
+ Well-posedness of Whitham-Broer-Kaup equation with negative dispersion 2023 Nabil Bedjaoui
Youcef Mammeri
+ Well-posedness of the Cauchy problem for the KdV equation at the critical regularity (Harmonic Analysis and Nonlinear Partial Differential Equations) 2010 展 岸本
+ Well-posedness of the Cauchy problem for the KdV equation at the critical regularity (Harmonic Analysis and Nonlinear Partial Differential Equations) 2010 Nobu Kishimoto
+ Smoothing and growth bound of periodic generalized Korteweg-de Vries equation 2020 Seungly Oh
Atanas Stefanov
+ On the wellposedness of the KdV equation on the space of pseudomeasures 2016 Thomas Kappeler
Jan Molnár
+ Well-posedness for a perturbation of the KdV equation 2019 Xavier Carvajal
Liliana Esquivel
+ PDF Chat WELL-POSEDNESS FOR A FAMILY OF PERTURBATIONS OF THE KdV EQUATION IN PERIODIC SOBOLEV SPACES OF NEGATIVE ORDER 2013 Xavier Carvajal Paredes
Ricardo A. Pastrán
+ On the Well-Posedness of the Dissipative Kadomtsev–Petviashvili Equation 2020 H. Wang
Amin Esfahani
+ PDF Chat On the wellposedness of the KdV equation on the space of pseudomeasures 2017 Thomas Kappeler
Jan-Cornelius Molnar

Works That Cite This (0)

Action Title Year Authors