Global Well-posedness for the Biharmonic Quintic Nonlinear Schrödinger Equation on $\mathbb{R}^2$

Type: Preprint

Publication Date: 2022-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2212.06487

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Global well-posedness for the defocusing, quintic nonlinear Schrödinger equation in one dimension 2009 Benjamin Dodson
+ GLOBAL WELL-POSEDNESS FOR SCHR ¨ ODINGER EQUATIONS WITH DERIVATIVE ∗ 2001 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terence Tao
+ Global well-posedness for Schrödinger equations with derivative 2001 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terry Tao
+ The Cauchy problem for the semilinear quintic Schrödinger equation in one dimension,the defocusing case 2002 Nikolaos Tzirakis
+ Global well-posedness and polynomial bounds for the defocusing $L^{2}$-critical nonlinear Schrödinger equation in $\R$ 2007 Daniela De Silva
Nataša Pavlović
Gigliola Staffilani
Nikolaos Tzirakis
+ Global well-posedness and polynomial bounds for the defocusing $L^{2}$-critical nonlinear Schr\"odinger equation in $\R$ 2007 Daniela De Silva
Nataša Pavlović
Gigliola Staffilani
Nikolaos Tzirakis
+ PDF Chat On the Global Well-Posedness for the Periodic Quintic Nonlinear Schrödinger Equation 2024 Xueying Yu
Haitian Yue
+ PDF Chat A Refined Global Well-Posedness Result for Schrödinger Equations with Derivative 2002 J. Colliander
M. Keel
G. Staffilani
Hideo Takaoka
Terence Tao
+ A refined global well-posedness result for Schrodinger equations with derivative 2001 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terence Tao
+ Global Well-Posedness and Polynomial Bounds for the Defocusing<i>L</i><sup>2</sup>-Critical Nonlinear Schrödinger Equation in ℝ 2008 Daniela De Silva
Nataša Pavlović
Gigliola Staffilani
Nikolaos Tzirakis
+ PDF Chat The Cauchy problem for the semilinear quintic Schrödinger equation in one dimension 2005 Nikolaos Tzirakis
+ Correction to “Global Well-Posedness and Polynomial Bounds for the Defocusing<i>L</i><sup>2</sup>-Critical Nonlinear Schrödinger Equation in ℝ” 2010 Daniela De Silva
Nataša Pavlović
Gigliola Staffilani
Nikolaos Tzirakis
+ PDF Chat Global Well-Posedness for Schrödinger Equations with Derivative 2001 J. Colliander
M. Keel
G. Staffilani
Hideo Takaoka
Terence Tao
+ Global Well-posedness for The Fourth-order Nonlinear Schrödinger Equations on $\mathbb{R}^{2}$ 2023 Engin Başakoğlu
Barış Yeşiloğlu
Oğuz Yılmaz
+ Global well-posedness and scattering for the defocusing quintic nonlinear Schrödinger equation in two dimensions 2018 Xueying Yu
+ PDF Chat Global well-posedness for the defocusing 3D quadratic NLS in the sharp critical space 2024 Jia Shen
Yifei Wu
+ Low regularity global well-posedness for the nonlinear Schrödinger equation on closed manifolds 2010 Takafumi Akahori
+ On the global well-posedness of the Calogero-Sutherland derivative nonlinear Schrödinger equation 2023 Rana Badreddine
+ Global Well-posedness for the Defocusing, Quintic Nonlinear Schrödinger Equation in One Dimension for Low Regularity Data 2011 Benjamin Dodson
+ PDF Chat Global well-posedness and scattering for the defocusing Ḣ1∕2-critical nonlinear Schrödinger equation in ℝ2 2021 Xueying Yu

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors